
The text font of “Automatic Control Laboratory” is DIN Medium

C = 100, M = 83, Y = 35, K = 22

C = 0, M = 0, Y = 0, K = 60

Logo on dark background

K = 100

K = 60

pantone 294 C

pantone Cool Grey 9 C

Automatic Control Laboratory

Semester Project

Data driven adaptive control:
a geometric approach

Sujet Phodapol
February 24, 2023

Advisors
Alberto Padoan
Jeremy Coulson

1

2

Abstract

With the advent of enhanced computing and storage capabilities, data-driven methods have
significantly impacted several fields of research. In control theory, the new wave of data-driven
methods has generated a renewed appreciation of Willems’ fundamental lemma, which allows one
to represent behaviors of linear time-invariant systems using input/output data. The fundamen-
tal lemma allows one to reformulate classical MPC algorithms in a purely data-driven setting and
to achieve surprising performance in several applications. However, the time-invariance assump-
tion is restrictive. This thesis explores a new algorithm, referred to as Dynamic Data-Enable
Predictive Control (DDeePC), to control linear time-varying behaviors. DDeePC uses a sub-
space tracking algorithm, Grassmanian Rank-One Update Subspace Estimation (GROUSE), to
leverage online measurement data to update the estimated subspace in real-time. Our algorithm
dynamically enhances the predictive capabilities of DeePC, resulting in improved tracking perfor-
mance for slowly time-varying systems. We numerically demonstrate the benefits and limitations
of the DDeePC algorithm in different scenarios.

3

4

Contents

1 Introduction 1

2 Background 3
2.1 Behavioral system theory . 3
2.2 Data-enabled Predictive Control (DeePC) . 4
2.3 The GROUSE algorithm . 5
2.4 Dynamic Data-enabled Predictive Control (DDeePC) 6

3 Experiments and Results 9
3.1 Experiments . 9

3.1.1 Experiment I: Slow time-varying system 10
3.1.2 Experiment II: Noisy System . 13

4 Conclusion 15

Bibliography 15

5

6

Chapter 1

Introduction

Data-driven methods have had a substantial impact on various sectors of research, due to the
development of more efficient computing and storage capabilities. There are many successful ap-
plications in machine learning and artificial intelligence, including computer vision and robotics.
Also, in control theory, researchers are beginning to leverage the fundamental lemma [22], which
allows them to implicitly represent a dynamical system from the sequence of input/output data
instead of modelling from physical knowledge. With this lemma, we can change the approach to
designing controllers for unknown systems. To illustrate, there are two main approaches to using
data in designing a controller: a direct and indirect approach. Indirect data-driven control is the
conventional way to use the collected data with the knowledge of the structure of the model to do
system identification to model the unknown system. Then the model is used in order to design
the model-based controller. However, this identification process is a very expensive and tedious
task [10, 12, 17, 19]. Also, this approach will provide the best approximate model, not the best
controller for the system. In other words, in the end, we would like to control the system, we
do not want to know the system. On the other hand, direct data-driven control directly uses
the collected input/output data to generate the control signal without explicitly identifying the
model, which will decrease the time and cost to design the controller. With this approach, we
also do not need physical knowledge of the model which can possibly be complicated in many
applications.

There are several data-driven control approaches that build on the fundamental lemma [2, 3,
7, 8, 20] both with predictive and feedback controllers. In this project, we focus on a specific
predictive data-driven control, namely Data-enabled Predictive Control (DeePC) [5]. This direct
data-driven method has shown great success in many applications on real-world applications,
including quadrotors [9] and excavators [21]. These examples show the advantages of direct
data-driven control that, with only data collection, this method can functionally control the
complex system. However, the theory developed for DeePC is still limited to a small range of
problems, including linear systems and systems with a small nonlinearity. In addition, many
systems in the real world evolve over time (i.e. time-variant systems). In order to extend this
approach to a wider range of applications, this method has to be able to adapt in real-time to
the changing system.

There are several approaches to modify DeePC to be able to handle non-linearity in the sys-
tem. The work from [13] demonstrates the approach to robustify DeePC by solving a min-max
optimization, resulting in stabilizing a noisy input/output and nonlinear system. Another work
from [6] address how to handle output chance constraints for unknown stochastic linear time-
invariant systems. However, these approaches are more suitable for the LTI system, and may
not be suitable for a system that evolves over time.

1

To deal with systems that change over time, researchers have proposed several ways to detect
the change and adapt the controller according to this change. Gain-scheduling [15] is one the
most popular way to control a system that changes from one operating condition to another.
However, this approach needs data on all operating conditions and cannot work with unknown
systems. For predictive control, work from [14] uses Gaussian process regression to learn the
uncertainty in the model to improve the performance of the racing car. However, this learning
approach requires a parametric model, which may not directly apply to the direct data-driven
control. Another approach is to track the change in the subspace and does online update on the
subspace [1]. This work demonstrates an online tracking algorithm that builds on the sample
observation vector. However, this algorithm is used to only identify the subspace of the system
not to control the system.

In this project, we propose an adaptive data-driven control, namely Dynamic Data-enabled
Predictive Control (DDeePC). This approach combines the state-of-the-art Data-enabled Pre-
dictive Control (DeePC) with the subspace tracking algorithm, which is Grassmanian Rank-One
Update Subspace Estimation (GROUSE). DDeePC is able to adapt the data model based on
the new data collection from evolving systems, resulting in stabilizing linear time-varying system.

The contributions of this project can be summarised as follows:

• We show the framework that combines DeePC and GROUSE as an adaptive data-driven
controller framework.

• We illustrate the behaviour and performance of DeePC and DDeePC in different time-
varying systems.

• We demonstrate the performance of the DeePC and DDeePC on noisy systems.

The outline of this report is organized as follows. In Chapter 2, we will go through theories on
data-driven control, subspace tracking and an implementation technique. Chapter 3 will present
the experimental setup and the numerical results of the experiment. Chapter 4 summarizes our
main results and outlines future research directions.

2

Chapter 2

Background

This Chapter will explain the theory behind DDeePC algorithm. Before we can design the direct
data-driven controller, we will introduce notations and theories that are needed in this approach.
There are two main components used to build this algorithm: Data-enabled Predictive Control
(DeePC) and subspace tracking algorithm (we use Grassmannian Rank-One Update Subspace
Estimation (GROUSE) in this project).

2.1 Behavioral system theory

A dynamical system can be defined from its behaviour according to [16, 18]. From [5], we define
behaviour and properties of a dynamical system as follows:

Definition 1. A dynamical system is a tuple with three elements (Z≥0,W,B), where Z≥0 is the
discrete-time set, W is the signal space, and B ⊆WZ≥0 is the behavior. ⌟

Definition 2. A dynamical system (Z≥0,W,B) is linear if W is a vector space and B is a linear
subspace of (W)Z≥0 , time invariant if σB ⊆ B where σ is the shift operator and complete if B is
closed in the topology of pointwise convergence. ⌟

Definition 3. A dynamical system B ∈ Lq, where Lq is the linear, time-invariant and complete
system and q ∈ Z≥0, is controllable if for every T ∈ N, w1 ∈ B|T , where B|T = {w ∈ (Rq)T |∃v ∈
B s.t. wt = vt, 1 ≤ t ≤ T} is a truncated trajectory of length T, and w2 ∈ B there exists T ′ ∈ N,
and w ∈ B such that wt = w1

t for 1 ≤ t ≤ T and wt = w2
t−T−T ′ for t > T + T ′. ⌟

In other words, a dynamical system is controllable if any two trajectories can be patched together
in finite time.

Definition 4. Let u = (u1, u2, ..., uT) ∈ RmT . Given T, Tf ∈ N, the Hankel matrix of depth
Tf ≤ T associated with u is defined as

HTf
(u) =


u1 u2 · · · uT−Tf+1

u2 u3 · · · uT−Tf+2
...

...
. . .

...
uTf

uTf+1 · · · uT


⌟

Definition 5. A vector u ∈ RTm is persistently exciting of order Tf if the Hankel matrix HTf
(u)

is full row rank. ⌟

3

Persistency of excitation is important to reconstruct the system behaviour (i.e., system identi-
fication). It is necessary for the signal to be sufficiently rich and long. In other words, HTf

(u)
has at least as many columns as rows:

T ≥ (m+ 1)Tf − 1

Willems’ fundamental lemma [22] is the key to the data-driven approach, DeePC. With all
mentioned definitions, we can state the fundamental lemma here:

Lemma 1. Fundamental lemma : Consider a controllable discrete-time LTI system B. As-
sume data trajectory wd = col(ud, yd) ∈ BT and input data ud is persistently exciting of order
Tf + n, where n is a number of states. Then, BTf

= colspan(HTf
(wd)) ⌟

The fundamental lemma provides conditions for a constrained behavior BTf
to be fully defined

by the image of the Hankel matrix HTf
(wd), which is created using just input-output data, it is

one of the most important lemmas in data-driven control.

2.2 Data-enabled Predictive Control (DeePC)

DeePC [5] is a direct data-driven control algorithm similar to model predictive control (MPC).
In other words, it is the controller that solves an optimization problem in a receding horizon
manner. The main difference is that, instead of using expert knowledge to build the predicted
model in the optimization problem like MPC, DeePC relies on Willems’ fundamental lemma to
directly use data to build the predictor which can predict the trajectory within the finite horizon.

The algorithm starts by assuming we have collected data from an unknown controllable LTI
system B with m inputs and p outputs. Let ud = col(ud

1 , . . . , u
d
T) ∈ RmT be a sequence of T

inputs applied to B and the sequence of outputs yd = col(yd
1 , . . . , y

d
T) ∈ RpT are measured where

T ∈ N and superscript d indicates that these data is the data collected from the offline process
from the system. Also, assume ud is persistently exciting of order Tini + Tf + n where n is the
order of the system and Tini, Tf ∈ N. Then, these input/output data are divided into two parts:
past data (p) and future data (f) and put into the Hankel matrices as follows:(

Up

Uf

)
= HTini+Tf(u

d),

(
Yp
Yf

)
= HTini+Tf(y

d),

where past data matrix (subscript p) includes the first Tini block rows of H and future data
matrix (subscript f) includes the last Tf block rows of H.

From the Lemma 1, we can use past data and future data to construct the trajectory of length
B|Tini+Tf , where past data is used to estimate the initial state, whereas future data is used to
predict the future trajectories. Then, a trajectory col(uini, u, yini, y) belongs to B|Tini+Tf if and
only if there exists g ∈ RT−Tini−Tf+1 such that

Up

Yp
Uf

Yf

 g =


uini
yini
u
y



Given a reference trajectory r = (r0, r1, r2, ...) ∈ (Rp)Z>0 , a prediction horizon N ∈ Z>0, input
constraints U ⊆ Rm, output constraints Y ⊆ Rp, output cost matrix Q ∈ Rp×p and control cost
matrix R ∈ Rm×m, the DeePC algorithm can be written as follows:

4

min
g,u,y

N−1∑
k=0

(||yk − rt+k||2Q + ||uk||2R)

subject to


Up

Yp
Uf

Yf

 g =


uini
yini
u
y

 , (2.1)

uk ∈ U , ∀k ∈ {0, ..., N − 1},
yk ∈ Y, ∀k ∈ {0, ..., N − 1}

Algorithm 1 DeePC
1: Solve optimization problem for g, u, y.
2: Apply first optimal control input.
3: Update uini and yini in the optimization problem from the recent measurement.
4: Return to 1.

2.3 The GROUSE algorithm

Grassmannian Rank-One Update Subspace Estimation (GROUSE) [1] is an online subspace
tracking algorithm that builds on a linear algebraic update rule in each updating iteration. This
algorithm aims to track an evolving d-dimensional subspace (S[t]) of Rn. At each time step t, we
observe a data vector vt ∈ S[t] at location Ωt ⊂ 1, ..., n. Then, one can minimize a cost function
which is the squared Euclidean distance between the current subspace estimate (UΩt) and the
observed data vector (vΩt) on the position that we have access to data in Ωt as:

F (S; t) = min
a
||UΩta− vΩt ||2 (2.2)

where subscript Ωt indicates the matrix with rows indexed by Ωt. Since in this project, we have
full access to the observation, this Ωt can be ignored. We can rewrite

F (S; t) = min
a
||Ua− vt||2 (2.3)

In other words, the algorithm will be initialized with a subspace, then it will measure the obser-
vation from the subspace and solve the minimization problem to minimize the distance (F (S; t))
between the observation vector (vt) and the subspace (Ut). Then this objective function will be
used to compute the gradient descent on the Grassmannian manifold to update the subspace
in that direction. Let η be a step size in the direction of the gradient. The algorithm can be
summarized in pseudo-code as follows:

Algorithm 2 GROUSE

1: Estimate weights: w = argmina ||Uta− vt||2
2: Predict full vector: p = Utw
3: Compute residual: r = vt − p

4: Update subspace: Ut+1 = Ut +
(
(cos(ση)− 1) p

||p|| + sin(ση) r
||r||

)
wT

||w|| ;σ = ||r||||p||

5

2.4 Dynamic Data-enabled Predictive Control (DDeePC)

In order to incorporate adaptive behaviour into DeePC, we propose a novel adaptive data-
driven controller, namely DDeePC, which integrates the subspace tracking mechanism into the
data-driven control framework. The main idea of the algorithm is to adapt the data model
according to the changing system. In DDeePC, GROUSE is used as a subspace tracking algo-
rithm which receives a new observation vector from the system as an input. The received input
and output data are stored in a buffer of the most recent measured input and output vseq =
col(u1, u2, ..., uG, y1, y2, ..., yG) ∈ R(m+p)(Tini+Tf+G−1), where G is the number of iterations in the
GROUSE algorithm. The observation vector vobs = col(upt , ypt , uft , yftf) ∈ R(m+p)(T ini+Tf) is
then constructed from the data buffer in the same order as the optimization problem, where
upt , ypt , uft , yft are the measured data vector at time t. The stored data are used to generate
past observation vectors. The current and past observation vector is then normalized to a unit
vector in order to make the algorithm converge. In each update step, these vectors are used to
update the predictor according to the GROUSE update rule. As shown in Fig. 2.1, the main
difference of the DDeePC to the standard DeePC is that the former updates its predictor every
time step, while the latter uses the fixed predictor from the initialization. Let dim be the number
of columns of U1 in the initialization of the DDeePC. We now present the DDeePC algorithm.

Figure 2.1: Block diagram of DDeePC illustrating the additional subspace tracking algorithm
block.

6

Algorithm 3 DDeePC
Input: data trajectories col(ud, yd) ∈ R(m+p)T , most recent input/output measurements
col(uini, yini) ∈ R(m+p)Tini , most recent sequence of observation vector vseq ∈ R(m+p)(Tini+Tf+G−1)

Initialization
1: procedure Initialization(H,dim)

2: Singular value decomposition: H = [U1U2]

[
Σ1 0
0 Σ2

]
[V1V2]

T , U1 ∈ R(m+p)(Tini+Tf)×dim

3: Initialize a predictor: Ut = U1

4: end procedure
Online adaptive control
1: procedure Subspace Update with GROUSE(Ut,vseq)
2: for i = 0 to G do
3: Construct observation vector: vobs from vseq at time t− i back to t− i−G
4: Normalized observation vector: vt =

vobs
||vobs||

5: Estimate weights: w = argmina ||Uta− vt||2
6: Predict full vector: p = Utw
7: Compute residual: r = vt − p

8: Update subspace: Ut ← Ut +
(
(cos(ση)− 1) p

||p|| + sin(ση) r
||r||

)
wT

||w|| ;σ = ||r||||p||
9: end for

10: return Ut

11: end procedure
12: procedure DeePC(Ut, uini, yini)
13: Similar to Algorithm 1
14: end procedure
15: Return to 1.

7

8

Chapter 3

Experiments and Results

This section illustrates the performance and limitations of the DDeePC algorithm by means of
numerical simulations. First, we consider a slowly-varying system. The system is controlled by
using both controllers, DeePC and DDeePC, in three different scenarios: small switching, large
switching system, and continuously changing. Then hyperparameters which are the number of
columns of the data matrix and regularization term (λg) for DeePC and the low-rank dimension
from singular value decomposition in the initialization (dim) and regularization term (λg) for
DDeePC are tuned using grid search. Second, both controllers will be tested with the systems
that are corrupted with Gaussian measurement noise. To verify the stability of the controllers,
two types of noise will be used. Similar to the first experiment, hyperparameter tuning will be
done. Finally, the objective cost will be used to evaluate the results and limitations.

3.1 Experiments

To understand the benefit and drawbacks of the DDeePC. We set up three experiments to answer
the following question:

• Q1: How is the performance of DeePC and DDeePC in switching systems?

• Q2: How is the performance of DeePC and DDeePC on a continuously evolving system?

• Q3: How noise has an effect on DeePC and DDeePC?

The data center model [4], which consists of a three-state system with the control u providing
local cooling for each rack and the state x reflecting the internal temperature of the racks, is used
in experiments. A linear model used to simulate this dynamic system is described as follows:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) + w(k)

where each matrix is as follows:

A =

1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

 , B =

1 0 0
0 1 0
0 0 1

 , C =

1 0 0
0 1 0
0 0 1

 (3.1)

w is the Gaussian measurement noise. To solve the regulation problem, the optimization problem
2.1 is modified to problem 3.2 with additional regularization terms as follows:

9

minimize
g,u,y

Tf−1∑
i=0

(
∥yi∥2Q + ∥ui∥2R

)
(3.2)

+ λg||g||2 + λyini ||σy||2

subject to Ug =


uini
yini
u
y

+


0
σy
0
0


The weighting matrices of the controller (Q and R) are fixed in problem 3.2, as are the weighting
parameters on the initial value (λyini) and the predicting horizon (Tf), but the hyperparameters
on the regularizing term (λg) and the predictor’s dimension (dim) are varied. We set the number
of iterations to 20 for GROUSE in DDeePC (G). Other hyperparameters in the experiments are
fixed as follows:

Q =

1 0 0
0 1 0
0 0 1

 , R =

10 0 0
0 10 0
0 0 10

 , λyini = 1000, Tf = 5

By simulating system 3.1, experiments are conducted to assess the performance of controllers.
In the initialization, generated data is then gathered to create a Hankel matrix (predictor). This
predictor is then used to solve the optimization problem in the receding horizon manner for the
regularization problem for both DeePC and DDeePC. The cost of the optimization problem is
then evaluated.

3.1.1 Experiment I: Slow time-varying system

In the first experiment, we investigate the behaviour and performance of DeePC and DDeePC
on the slow linear time-varying (LTV) noise free system. Small switching, large switching, and
continuously changing systems are the three types of LTV systems, which we will examine. We
select the first element in the A matrix to be a function that can change over time in order to
imitate the variation in the system as follows:

A(k) =

a1(k) a2 a3
a4 a5 a6
a7 a8 a9



To conduct experiments, We first collect data from a simulated time-invariant system and then
build a data matrix. The optimization problem then uses this matrix as a predictor. Next, the
system is simulated for 50 timesteps until it reaches a steady state, and then the system will be
changed based on each experiment. Three objective costs in problem 3.2: total cost, pre-cost
(i.e. total cost prior to the change) and post-cost (i.e. total cost after the change) is measured
and evaluated. The experiment can be summarized in Fig. 3.1.

10

Figure 3.1: Time history of system controlled using DDeePC.The dashed line denotes the start
of a system change. After the change, the system exhibits two different types of behaviors: the
green line represents a stable behavior, whereas the red line represents an unstable behavior.

Switching system

In this experiment, our goal is to simulate a system that gradually transitions to another system
and remains there indefinitely. For instance, a data center rack may have flaws that alter the
material’s heat capacity properties. In order to replicate this behaviour, we apply the Sigmoid
function as a changing function since, with this function, the system will converge to another
dynamic and stay there forever. We use the following equation to conduct two experiments with
the small change and the large change (i.e., twice the size in amplitude of the small change) in
the system:

a1(k) = a1(0) + 0.15(
2

1 + e−k
− 1)

a1(k) = a1(0) + 0.3(
2

1 + e−k
− 1)

The findings displayed in Fig. 3.2 demonstrate that DeePC is capable of handling this change
in the system when given a sufficiently large data matrix and the right hyperparameter tuning.
Also, as shown in Fig. 3.3, DDeePC can also stabilize this switching system. DeePC, however,
has a smaller working region when the size of the change in the system is increased (as shown in
Fig. 3.4), whereas DDeePC performs nearly equally as shown in Fig. 3.5.

Figure 3.2: The objective cost of DeePC on a small switching system

11

Figure 3.3: The objective cost of DDeePC on a small switching system

Figure 3.4: The objective cost of DeePC on a large switching system

Figure 3.5: The objective cost of DDeePC on a large switching system

Continuously changing system

Instead of switching to a new dynamic as in the previous experiment, we gradually evolve the
system over time to add more instability. This behaviour can represent the accumulation of dust
on the rack, which might lead to an increase in temperature on the rack. In other words, this
change will decrease the stability of the system. We utilize the logarithm function to replicate
the slow change in order to model this phenomenon as follows:

a1(k) = a1(0) + 0.1log(k + 1)

The results in Fig. 3.6 demonstrate that DeePC cannot stabilize the system with any tuning of
hyperparameters by illustrating all unstable systems in post cost. On the other hand, DDeePC

12

can still track this slow change, allowing it to regulate this system with the proper hyperparam-
eters. For DDeePC, we can also observe that if the number of columns is too high (i.e. more
than 40), the predictor matrix from SVD will become not slim enough (i.e. there are more rows
than a column), which will lead to poor performance for the GROUSE algorithm to converge.
As a result, DDeePC is unable to track and stabilize the system.

Figure 3.6: The objective cost of DeePC on a continuously changing system

Figure 3.7: The objective cost of DDeePC on a continuously changing system

3.1.2 Experiment II: Noisy System

We now introduce measurement noise into the system in this experiment. Both the data collection
procedure and the simulation process will incorporate this noise. We employ the Gaussian
noiseÂ as measurement noise and then conduct the experiment with two sizes of noise in order
to examine how noise affects both the DeePC and DDeePC algorithms. The zero mean (µ = 0)
and small standard deviation (σ = 0.2) noise is used in the first experiment. Both DeePC and
DDeePC are capable of stabilizing the noisy system, as illustrated in Fig. 3.8. However, when
we increase the size of the noise to σ = 1.0, DeePC has a smaller working region and DDeePC
cannot stabilize the system at all tuning hyperparameters that were tested. This experiment
demonstrates the DDeePC method’s drawback, that it is sensitive to noise in this particular
set of experiments. The outcome might be caused by the algorithm that updates the subspace
using the observation vector’s past data; as a result, DDeePC might converge to the incorrect
subspace, leading to an unstable system.

13

(a) DeePC (b) DDeePC

Figure 3.8: The objective cost of DeePC and DDeePC in a low noise regime

(a) DeePC (b) DDeePC

Figure 3.9: The objective cost of DeePC and DDeePC in a large noise regime

14

Chapter 4

Conclusion

In this project, we have proposed an adaptive data-driven control, DDeePC, combining a sub-
space tracking algorithm, GROUSE, with DeePC. The algorithm works by using a series of
measurement data to update the predictor model in the optimization problem. We also propose
a way to modify GROUSE to incorporate it into this controller. The key advantage of this
approach is the ability to adapt the optimal control rule based on the current data from the
system, which allows it to stabilize the evolving system.

The standard DeePC can only stabilize the small change in the system, as demonstrated by
the numerical experiments in the small amplitude switching system case, while it cannot sta-
bilize the large change in the system (as shown in large amplitude switching and continuously
changing system). DeePC can handle the tiny change system utilizing the regularization term.
This regularization term, however, is insufficient to stabilize the system for the more significant
change. The reasons are that the predictor matrix is fixed from the data-collecting process, thus
the algorithm is unable to perceive the change in the system. On the other hand, DDeePC
demonstrates the capability to track a variety of changes in slow time-varying systems utilizing
the subspace tracking algorithm, allowing it to regulate systems to the origin.

The main drawback of DDeePC is that it is sensitive to noisy systems, despite performing better
than DeePC in changing systems. DDeePC begins to malfunction when the noise-to-signal ratio
is too high. The adaptive technique may converge to the incorrect subspace since the observation
vector is built from both the past and the present data. Therefore, DDeePC is unable to stabilize
a highly noisy system. Future work can address this problem by substituting different subspace
tracking techniques for GROUSE. For instance, the work from GRASTA [11] provides a robust
subspace tracking approach to handle outliers, which may solve the noise issue. Furthermore,
further research is needed to provide formal theory and rigorous evidence of stability because
this project is currently in its preliminary stages. The more obvious benefits of this strategy
need to also be shown by applying this algorithm to a real-world system.

15

16

Bibliography

[1] Laura Balzano, Robert D. Nowak, and Benjamin Recht. “Online identification and tracking
of subspaces from highly incomplete information”. In: 2010 48th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton) (2010), pp. 704–711.

[2] Julian Berberich et al. “Data-Driven Model Predictive Control With Stability and Robust-
ness Guarantees”. In: IEEE Transactions on Automatic Control 66.4 (2021), pp. 1702–
1717.

[3] Julian Berberich et al. “Robust data-driven state-feedback design”. In: 2020 American
Control Conference (ACC). IEEE, 2020.

[4] Coarse-ID Control. https://www.argmin.net/2018/05/11/coarse-id-control/.

[5] Jeremy Coulson, John Lygeros, and Florian Dörfler. “Data-Enabled Predictive Control:
In the Shallows of the DeePC”. In: 2019 18th European Control Conference (ECC). 2019,
pp. 307–312.

[6] Jeremy Coulson, John Lygeros, and Florian DÃ¶rfler. Distributionally Robust Chance Con-
strained Data-enabled Predictive Control. 2020.

[7] Claudio De Persis and Pietro Tesi. “Formulas for Data-Driven Control: Stabilization,
Optimality, and Robustness”. In: IEEE Transactions on Automatic Control 65.3 (2020),
pp. 909–924.

[8] Florian DÃ¶rfler, Pietro Tesi, and Claudio De Persis. “On the Role of Regularization in
Direct Data-Driven LQR Control”. In: 2022 IEEE 61st Conference on Decision and Control
(CDC). 2022, pp. 1091–1098.

[9] Ezzat Elokda et al. “Data-enabled predictive control for quadcopters”. In: International
Journal of Robust and Nonlinear Control 31 (July 2021).

[10] Michel Gevers. “Identification for Control: From the Early Achievements to the Revival of
Experiment Design*”. In: European Journal of Control 11.4 (2005), pp. 335–352.

[11] Jun He, Laura Balzano, and John C. S. Lui. “Online Robust Subspace Tracking from
Partial Information”. In: CoRR abs/1109.3827 (2011).

[12] HÃ¥kan Hjalmarsson. “From experiment design to closed-loop control”. In: Automatica
41.3 (2005). Data-Based Modelling and System Identification, pp. 393–438.

[13] Linbin Huang et al. “Robust Data-Enabled Predictive Control: Tractable Formulations and
Performance Guarantees”. In: (May 2021).

[14] Juraj Kabzan et al. “Learning-Based Model Predictive Control for Autonomous Racing”.
In: IEEE Robotics and Automation Letters 4.4 (2019), pp. 3363–3370.

[15] Douglas Leith and W.E. Leithead. “Survey of gain-scheduling analysis and design”. In: Int.
J. Control 73 (Jan. 2000), pp. 1001–1025.

[16] Ivan Markovsky et al. “Exact and Approximate Modeling of Linear Systems: A Behavioral
Approach”. In: 2006.

17

https://www.argmin.net/2018/05/11/coarse-id-control/

[17] Babatunde A. Ogunnaike. “A contemporary industrial perspective on process control the-
ory and practice”. In: Annual Reviews in Control 20 (1996), pp. 1–8.

[18] Jan Willem Polderman and Jan C. Willems. Introduction to Mathematical Systems Theory
: A Behavorial Approach. Vol. 26. Texts in Applied Mathematics. New York: Springer,
1998.

[19] J. Richalet. “Industrial applications of model based predictive control”. In: Automatica 29.5
(1993), pp. 1251–1274.

[20] Henk J. van Waarde et al. Data informativity: a new perspective on data-driven analysis
and control. 2019.

[21] Felix Wegner. “Data-enabled Predictive Control of Robotic Systems”. en. Master Thesis.
Zurich: ETH Zurich, 2021-04.

[22] Jan C. Willems et al. “A note on persistency of excitation”. In: Systems Control Letters
54.4 (2005), pp. 325–329.

18

	Introduction
	Background
	Behavioral system theory
	Data-enabled Predictive Control (DeePC)
	The GROUSE algorithm
	Dynamic Data-enabled Predictive Control (DDeePC)

	Experiments and Results
	Experiments
	Experiment I: Slow time-varying system
	Experiment II: Noisy System

	Conclusion
	Bibliography

