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Abstract—State estimation is one of the challenges for the
system that cannot directly monitor the states and works in
an unforeseen environment. Pipe Inspection Gauge (PIG) is an
intriguing example since it operates at a deep level in a pipe
beneath the sea. Due to the data transmission limitation (i.e.
cannot use the GPS for tracking), the robot can rely solely
on the onboard sensor to estimate the states. In this project,
the standard techniques Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) are utilized to estimate the
position and the speed of the robot. Two sensors data are used
in this project: encoder, and flow speed sensor. We experiment
the estimators with various scenarios to highlight the benefits
and drawbacks of each. First, we demonstrate the advantage of
sensor fusion over a single sensor. The performance of EFK and
UKEF is then demonstrated in a variety of circumstances. Also,
the slip detection algorithm is proposed and investigated. Finally,
joint parameter estimation using EKF will be implemented.

Index terms— Pipe Inspection Gauge, State Estimation,
Extended Kalman Filter, Unscented Kalman Filter, Sensor
Fusion

I. INTRODUCTION

Pipeline Inspection Gauge (PIG), as depicted in Fig. 1, is
a tool that has been used in the oil and gas industry for a
long time for survey and maintenance. The inspection tool’s
working principle is that the robot is propelled by the fluid in
the pipeline along the pipe from one site to the other site to
collect the structure data, including corrosion of the pipeline
surface.

The challenge of this robot comes with poor data collection,
including incorrect corrosion position. These shortcomings
might result in a significant waste of time and resources
throughout the maintenance procedure. The main causes of
poor data collecting are the fluctuation of the external fluid,
which causes the robot’s velocity to fluctuate dramatically, and
the slippage of the sensors, which results in incorrect position
mapping.

The recent approach handles the problem by designing the
active PIG [1], which uses the turbine to directly drive the
PIG. Another approach is the passive PIG [2], which uses
the morphology of the tool to change the pressure difference
in order to control the tool’s velocity. However, in order to
develop an efficient closed-loop speed controller, both methods
require a reliable velocity estimator.

Another factor that makes the state estimation of this robot
complicated is the operational environment. PIG is commonly
used in the pipeline under the ocean, where GPS transmission
is not possible. As a result, we cannot rely on satellite data
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to do robot localization. Normally, robot localization and state
estimation in a limited GPS signal place can be done using
landmarks [3]; however, in the long pipeline, it is difficult
to specify proper landmarks and the robot also only operate
in one direction, so we cannot also use the loop closure to
improve the localization precision. Therefore, we can use only
data from the onboard sensors of the PIG, encoders, inertial
measurement unit (IMU) and flow sensor, to estimate states.

One last challenge is that, in the real system, some parame-
ters are impossible or difficult to measure such as the friction
constant. Therefore, we will require the method to approximate
these values.

Our goal in this project is to create and implement the state
estimator for the PIG and design the slip detection to handle
the slipping issue. Although we can simply use data from
one sensor to estimate the states, in practice, there are several
methods that make use of multiple sensors to get a better state
estimation (i.e. Sensor fusion). Due to the fact that the motion
of the PIG can be represented with the nonlinear equation,
we select two nonlinear estimators: Extended Kalman Filter
(EKF) and Unscented Kalman Filter (UKF) as the methods to
estimate this system. First, We will demonstrate the benefit of
using multiple sensors compare to one sensor. Subsequently,
we will investigate and compare the performance of EKF
and UKF in various scenarios. The slip model will then be
introduced into the system, and the slip detection will be
designed to reject outlier data. Lastly, we show how to estimate
the parameter using the EKF framework.

The contributions of this project can be summarised as
follow:

e We show how to implement EKF and UKF as a sensor
fusion framework and the advantages over one sensor
estimation.

o We demonstrate the behavior and performance of EKF
and UKF in different inputs.

« We propose a slip detection algorithm that may be used
to reject outliers and prevent the error from slipping
occurrence.

o We manifest the implementation of the joint EKF for
parameter estimation.

The outline of this report is organized as follows. The
related works in the state estimation are examined in the
following section. In part 3, we will go through EKF and
UKF’s physical model, sensor model, and implementation
technique. Part 4 will present the findings of the experiment



to answer the contributions. Lastly, the conclusion from the
experiment will conclude in part 5.
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Fig. 1. Pipe Inspection Gauge: the robot consists of three sensors: encoders,
IMU and flow sensor. Blue arrows show the direction of the flow through the
robot.

II. RELATED WORK

While Extended Kalman Filter is one of the most commonly
used estimators for nonlinear systems, Unscented Kalman filter
is another novel estimator that can handle the nonlinearities
of the system [4].

There are several studies that use KF as a method for posi-
tion and speed estimation in different systems. For example,
the work from J.K. HWANG [5] explains how to estimate the
vehicle’s speed by combining wheel speed and accelerome-
ter sensor with a conventional Kalman Filter. For the more
complex systems (i.e. nonlinear system), EKF and UKF are
widely used. The paper [6] shows how to implement the EKF
for speed estimation in permanent magnet synchronous motor.
For speed estimation, apart from the basic UKF, several types
of unscented transform (UT) are developed to generate sigma
points to use in state estimation for nonlinear system [7].

For the PIG system, the work from Salazar [8] uses only
data from encoders to estimate the speed of the tool. The
result is then compared with the supervisory data from the
external pressure sensor. Despite the fact that the result has an
acceptable tiny inaccuracy, the system is evaluated in a low-
noise control environment. Our project extends the framework
using EKF and UKF to combine multiple sensors (i.e. encoder
and flow sensor) to estimate the states of the PIG. The slip
detection is also added to the estimator. With this framework in
place, the estimator will be able to better deal with unexpected
events.

Several frameworks for parameter estimation are proposed.
The study from Blanchard [9] describes how to estimate the
parameter of the roll plane modelling vehicle using EKF
The work [10] shows that UKF can also use for parameter
estimation with superior convergence performance. In our
project, we choose EKF, which is more simple to implement,
as the method for this estimation.

III. METHOD

A. PIG equation of motion model

The equation motion of PIG [2] can be represented by the
force interaction between the fluid and the robot, including

Force from pressure difference (F},), the change of momentum
of the external fluid (F},,) and friction force (f):

mi = Fp+ Fy, — f (1)

From the configuration of the PIG, the pressure difference can
be computed as a function of the velocity of the bypass fluid
through the PIG (Vg p), resulting in:

mit = SkoVpA+ pA(Ve )i+ L) ] @
Where m,z,4,% and A are the mass, position, velocity,
acceleration, and cross-sectional area of PIG, respectively. k
is the pressure loss coefficient based on the configuration of
PIG, which is assumed to be constant in this project. p and
Vr are the density and the velocity of the external fluid. With
the conservation of mass, the bypass velocity of the fluid can
be represented as:

D2

Vap = (Vi =)

3)
Where D and d are the diameter of the pipe and the hole
of the PIG. In this project, to avoid the piecewise differential
problem in Extended Kalman Filter, we model the friction with
Coulomb friction model [11] by modelling friction as:

f = pytanh(i) @)

Where fif is the constant of the friction. Therefore, we can
govern the state space description of the system as follow:

T=v @)
. kpAD* 5 pA Ve, prtanh(v)
0= i Ve =)+ T (Ve —0) (vt ) = TR

Where = and v are the position and speed of the gauge. These
two states are chosen to be measured by sensor, encoders.
Therefore, the output can be defined as follow:

y=[z o]" (7)

In order to simulate, we need to transform from continuous
time to discrete time. Thus the derivation is defined by the
basic forward difference method as follow:

i x(k+1) —x(k)

At ®)

B. Extended Kalman Filter

EKF is the linearized version of the conventional Kalman
Filter (KF). According to Probabilistic Robotics [4], EKF uses
the first-order Taylor’s expansion to deal with the nonlinear
system. The algorithm consists of two main steps: the predic-
tion and the update step.



1) Prediction Step: In this step, we can predict the state of
the system from the linearized motion model as follows:

e = g(ue, pe—1) ©)

S =G5 G+ Ry (10)

From eq. 5 and 6, we can derive the linearized function in
Jacobian matrices as:

From [13], the recommended range of parameters are x > 0,
a € [107%4,1] and 3 = 2 is the optimal value for the Gaussian
distribution. Therefore, we choose o« = 0.001, x = 0 and
B =2.

3) Unscented transform: The sigma points are then trans-
formed through nonlinear function g. New mean (p’) and
covaraince (X') are governed from the following equation:

1 At . ,
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The measurement model can derive from eq.7 as follow: o= Z% Y 20
=[O (12) ™ Llil(y '
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2) Update Step: Then, we can compute Kalman gain and
update the state with the following procedure:

Ky =SH (H,SH] + Qi)™ (13)
pe = i + K (20 — h(jit)) (14)
Y, = (I — K:Hy)%, (15)

C. Unscented Kalman Filter

Although the EFK is a good enough estimator for the
slightly nonlinear system, UKF is introduced to handle a
greatly nonlinear system. Compare to conventional EKF, in-
stead of linearization, UKF use sigma points and unscented
transform to approximate the nonlinear system. According to
[4], the unscented transform algorithm can be implemented as
follow:

1) Generating Sigma point: For the system with n-
dimensional Gaussian distribution with mean (x) and covari-
ance matrix (), sigma points (x!’) are generating by the
following equations with total 2n + 1 points:

X = (16)
Y =p+ (/(n+NT); fori=l..n (17)
Y =p—(/(n+ND)ie, fori=n+1,.2n (18)

A=a’(n+k)—n (19)

Where a and k are scaling factor. In practical consideration of
computing efficiency, we can use Cholesky factorization [12]
to compute /X as follow:

»=LLT (20)

2) Weight computing: Weights for the mean (w,,) and
covariance (w.) that will use to recover new Gaussian are
computed as follows:

A
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wll = Sy fori =2 23)
wl = w}] 24)

The main algorithm of Unscented Kalman Filter is then
implemented in the same way as the conventional Kalman
Filter with unscented transform

4) Prediction step: Like Kalman Filter, this step is used to
compute the belief of the state (i, %), but, instead of using
mean, we use sigma points that compute from unscented
transform as follows:

Xt—1 = (-1 te—1 F YV Ei—1 fe—1 — 7/ Ze—1) (28)
Xi—1 :g(UhXt 1) (29)
Z wll ") (30)
Z wl () = ) (G = )"+ Ry 31)

Then, we do the same procedure to compute the belief
measurement from the belief (i, ) as follows:

Xe= (i Be+7VE: e —7VEe) (32)
2n
= wliz]! (34)
=0
2n .
o=y wl(Z =22 -2+ 69
1=0
Spt = Yl - a2 - 2" (36)
=0

5) Update step: We compute the Kalman gain and update
the states (i, ) from the innovation as following equations:

K, =%7%81 (37)
pe =[x + Ki(ze — 2¢) (38)
=% — K5 K (39)

D. Sensor Model

In this project, we have two main sensor types: three en-
coders and a flow sensor as shown in Fig.1. We use MATLAB
to simulate the system (ground truth) and generate sensor data



through the sensor model from the simulated system. Data
from the flow sensor is used as an input (u) in the prediction
step. Encoders are used in the measurement model. These
sensor data will be used in sensor fusion (i.e. Kalman filter
framework as shown in Fig.2) to estimate the states of the
robot: position.

1) Encoder Model: Three encoders are used to measure
the position and speed of the robot. By averaging the mea-
surement, the noise can be reduced to some extent. From the
simulated system, we can generate the encoder data for each
encoder from the following equations:

[(x(k) — z(k — 1)) + v At]ET
2TR

Where R and ET is the wheel radius and encoder ticks, which
is 256 in this model. v, is a white Gaussian measurement
noise. Then, from the encoder data, we can compute the
position and velocity from the following equations:

number of ticks = (40)

position = 3E7T Z number of ticks; 41
. posztzon

locity = ——— 42

velocity AL “42)

2) Flow Sensor Model: Flow sensor data is used as an input
for the prediction step. Though in the real physical system,
this data will have some noise, for simplicity, we assume this
sensor data to be very accurate.

Encoders 1
Encoders 2
Encoders 3

Flow sensor—p»|

» Position

EKF/UKF

»Velocity

Fig. 2. The Kalman filter framework for state estimation.

E. Slip model

Since the robot is operating on an uneven pipe surface.
One of the challenges in this system is the slipping of
the encoder wheel. Slipping will result in the wrong data
collection of the encoder. Thus if we include this data in
the measurement model, the estimation will be wrong. To
simulate this occurrence, we include some randomness in the
data collection. When the slipping occurs, the encoder will
detect much fewer ticks. To handle this scenario, we use the
threshold, which is computed from the percent of total ticks
from three encoders in order to accept or reject the data by
the following rule:

number of ticks; < threshold x Z number of ticks;
i=1
(43)
Therefore, the final framework including the slip model is
shown in Fig.3.

( -
Encoders 1 —}Posmon
Encoders 2 Slip Model
Encoders 3 EKF/UKF
Flow sensor > —»Velocity
Fig. 3. The Kalman filter framework for state estimation with the slip

detection

F. Parameter Estimation

Apart from state estimation, Kalman Filter can be also used
to estimate parameters. In this project, we use EFK joint
parameter estimation as a method to show this ability. The
estimation is implemented by introducing parameter (©) to a
state-space description. This procedure can be implemented by
the fact that we assume the parameter to be constant, which
can be described by the following equation:

de

dt
Then we recompute the Jacobian matrices (G and H) and
follow the same procedure as normal state estimation EKF.

=0 (44)

IV. EXPERIMENTS

To understand the benefit and drawbacks of the EKF and
UKF. We set up four experiments to answer the following
question:

e QI: Why do we need the KF for the sensor fusion?

e Q2: What difference between EKF and UKF in variety
of inputs?

e Q3: How slip model has an effect on the estimation?

¢ Q4: How to estimate parameters using EKF?

By investigating these questions, we can understand more
about the circumstances where we should use EKF or UKF.
Moreover, we will study how the slipping affects the state
estimation and how the simple rule can minimize the error.

In these experiments, we choose the process noise to be
w, = 0.1 and w, = 0.3 and measurement noise, vy = 1.
The study is conducted by tuning the parameters (i.e. R and
@) to get the smallest error in one scenario and use the
same parameters to test in other situations. For EKF, we use
covariance matrices as follow:

0.12 0 [0.152 0

k= [ 0 0.12} Q= | 0 0.32}

For UKF, we use covariance matrices as follow:
012 0 [0.232 0

k= [ 0 0.12} Q= | 0 0.32}

The initial states value are:
(1 0
0 1

PIG is used as a system to evaluate the performance of
estimators. The ground truth is simulated and sent to the sensor
model, then the estimators will use the sensor data to do the
estimation. The parameters for PIG is shown in Tab. IV.

=0 1],==




TABLE I
PARAMETERS USED FOR PIG MODEL

Symbols | Value Unit
m 427 kg
D 16 inch
d 8.32 inch
k 2.795 -
p 14.78 | kg/m?
A 0.095 m?
I 500 N

A. Experiment 1: Sensor Fusion

In this experiment, we demonstrate the benefit of the
Kalman filter as a framework for sensor fusion to estimate
the state of the system compared with the simple low pass
filter. To implement the simple low pass filter, we can use the
following equation:

qlk] = (1 — x)q[k] + rqlk — 1]

where x is the weight between O and 1. The closer x to
1 means that the lower cut off frequency, resulting in more
smooth data. We choose « = 0.9 to filter the encoder data in
this experiment. From Fig.4, the result shows that estimated
position using one sensor can yield an accepted result. On
the contrary, as shown in Fig. 5, the raw velocity data has a
large size of noise. Although the low-pass filter can smooth
out the noise, the filter makes some delay to an estimation.
With EKF and UFK, we combine two sensors, encoder and
flow sensor data, together to estimate the states, resulting in
better estimation with smaller delay as shown in Fig. 6 and
smaller mean square error as shown in Tab. II.

(45)
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Fig. 4. Estimated Position using Low-pass filter

Comparing Estimated Velocity

Raw
—Actual
| ——LP-filtrered

Velocity [m/s]
b M 4 o = N w a2 o o o~

0 5 10 15 20 25 30 35 40 45 50
Time [s]

Fig. 5. Estimated Velocity using Low-pass filter

Comparing velocity estimates with KF
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Fig. 6. Estimated Velocity using EKF and UKF

TABLE 11
MEAN SQUARE ERROR (MSE) OF DIFFERENT METHODS

Estimators LP EKF | UKF
Position MSE | 1.06 | 0.54 | 0.51
Velocity MSE | 0.52 | 036 | 0.46

B. Experiment 2: State estimation with different input

In this section, we demonstrate the behavior of EKF and
UKF in different working scenarios. We simulate by using dif-
ferent flow velocities (i.e. input). Five types of input as shown
in Fig. 7, including constant, sine, sine with interruption, step
and square wave input are used. We use the same tuning
parameters R and @) for this experiment. The experiment is
conducted three times with different random seeds in order
to investigate the performance of each estimator, which are
shown by mean square error (MSE).

Constant
_—aF . ‘ . . ‘ ‘ ‘ . ‘ -
T L
> E2f
L] 5 10 15 20 25 30 35 40 45 50
—1
T L i
> E
o 5 10 156 20 25 30 35 40 45 50
Sine with interruption
—10 T T T T T T T T
T L.
>E
E'D 5 10 15 20 25 30 35 40 45 50
Step
—5 T T T T ;i ;i T ;i
T 2
E
E'D 5 10 16 20 25 30 35 40 45 50
Square wave
—5 T I T T I T T
R
>E

o 5 10 15 20 25 30 35 40 45 50
Time [s]

Fig. 7. Variety of input used in the experiment

The estimated position and velocity from each input are
shown in Fig.8 and Fig.9, respectively. The result in Fig. 10
shows that UKF performs better in estimating the position of



the robot; however, from Fig. 11, EKF has a better estimation
for the velocity of the robot.

Estimated Position using EKF and UKF

2 EEE Ground truth
B =) —EKF
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Fig. 8. Estimated position from a variety of inputs

Estimated Velocity using EKF and UKF

Vel
[m/s]

Vel

30 a5

Ground truth
—EKF

Vel

Vel

Vel

) 5 10 15 20 25 30 36 40 45 50
Time [s]

Fig. 9. Estimated velocity from a variety of inputs

C. Experiment 3: Slip model

In this experiment, we investigate one of the challenges of
this system, the slipping occurrence. We simulate the event
by introducing the likelihood for each encoder to be slipped
if the slipping happens the number of ticks will be changed
by the following rule:

number of ticks = number of ticks x rand x 0.5 (46)

Position MSE for EKF and UKF given various inputs

MSE Error

Constant Pure sine Sine w.int. Step

Input signal

Square wave

Fig. 10. Mean square error of position from a variety of inputs

Velocity MSE for EKF and UKF given various inputs

MSE Error

Constant

Pure sine Sine w. int Step

Input signal

Square wave

Fig. 11. Mean square error of velocity from a variety of inputs

The experiment is done by comparing the estimator with
slip detection and without slip detection using sine with
interruption input. As shown in Tab. III, the slip detection give
a better result (i.e. lower MSE in both position and velocity).
From Fig. 12, the experiment shows that the estimator without
slip detection will accumulate the error in position, resulting in
a very high error. On the other hand, from Fig. 13, slipping has
a small impact on the velocity estimation, which can observe
from a slightly change in MSE.
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80 -
8 E 60
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Fig. 12. Estimated position for the system with and without slip detection
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Fig. 13. Estimated velocity for the system with and without slip detection

TABLE III
ERROR FROM THE SLIPPING OCCURRENCE

Condition Slip Detection W/O Slip Detection
EKF UKF EKF UKF

Position MSE | 0.0535 | 0.0510 | 26.5955 | 26.5693
Velocity MSE | 0.2284 | 0.3415 | 0.2782 0.4578

D. Experiment 4: Parameters Estimation

In this part, we demonstrate another benefit of the Kalman
Filter framework, which is parameter estimation. We choose to
estimate the friction constant (y¢) using EKF. Thus we add the
parameter as a new state to the state vector with the following
equation:

Jt = B “7)

We can derive the new Jacobian matrices for the process
and measurement as:

1 At 0
Gi=1{0 1+pAt -t 48)
0 0 1
_ [kpAD* pA Vg pysech?(v)
p= W(U*VF)JFE(?*QU)*i
(49)
1 0 0
H, = [O ! 0} (50)

For simplicity in the tuning procedure, we assume all
process and measurement noise to be zero. We choose tuning
parameters and initial values to be

012 0 0 ,
R=|0 012 0l,0= [0%5 O%Q]
0 012 102 :

1
z=[0 1 300],2= 0
0

O = O
_= O O

The result in Fig. 14 shows that the friction constant
converges to the actual value, therefore we can approximate
the parameter using the EKF framework.

- Parameter Estimation using EKF

500

450
400

sor —Actual
—EKF

300
0

Friction Constant [N]

10 20 30 40 50 60 70 80 90 100
Time [s]

Fig. 14. Friction constant estimation using EKF

V. DISCUSSION AND CONCLUSION

In this project, we implement and investigate the behavior
of EKF and UFK estimators. Also, we propose a mechanism
for detecting and rejecting the occurrence of slips.

The first experiment shows that the multiple sensors frame-
work improve the estimation process by reducing the noise,
resulting in smaller error compare to a single sensor.

In the second experiment, UFk outperforms EFK in position
estimation. In terms of velocity estimation, however, EKF
shows superiority over UFK. The key advantage of EKF over
UKEF is that it is more computationally efficient due to the
fact that UKF has more steps in the unscented transform.
The performance of UKF should, in theory, be at least as
accurate as EKF. Furthermore, because this method employs
more points, sigma points, to estimate the nonlinear system
(EKF uses only mean). Another advantage is that UKF does
not have to compute the Jacobian matrix, which can be a time-
consuming task in more complex systems. The reason that
the experiment does not demonstrate a significant difference
between the two methods may come from the fact that the
system is not too nonlinear and from the numerical inaccuracy.
Another reason can also come from the tuning parameters (¢
and R), which should be retuned depending on the situation.

The third experiment shows that slip detection can reduce
the error from the unexpected situation (i.e. slipping). In
further work for slip detection, we will combine the inertial
measurement unit (IMU) with the slipping model, thus we can
compare the estimated speed from encoders and from IMU
(integration of acceleration) to make the rejection rule.

The final experiment shows how to estimate the parameter
from EKF framework. Although the result shows that this
method is capable of estimating the parameter, when adding
noise, tuning R and ¢} will be more complicated and the
accuracy also lose. In future work, we will estimate the
parameter using UKF framework.
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