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Abstract—In this paper, we introduce a ROS based frame-
work designed for the planning and control of robotic systems
within the context of precision agriculture, with an emphasis
on human-in-the-loop capabilities. Utilizing Linear Temporal
Logic to articulate complex task specifications, our algorithm
creates high-level robotic plans that are not only correct by
design but also adaptable in real time by human operators.
This dual-focus approach ensures that while humans have the
flexibility to modify the high-level plan on-the-fly or even take
over low-level control of the robots, the system inherently
safeguards against any human actions that could potentially
breach the predefined task specifications. We demonstrate our
algorithm within the dynamic and challenging environment of a
real vineyard, where the collaboration between human workers
and robots is critical for tasks such as harvesting and pruning,
and show the practical applicability and robustness of our
software. This work marks a pioneering application of formal
methods to complex, real-world agricultural environments.

I. INTRODUCTION

Collaboration between humans and robots is becoming
increasingly prevalent in today’s society, wherein the pre-
cision, speed, and task repeatability of robotic systems are
complemented by the adaptability, ingenuity, and context-
aware decision-making capabilities of humans to achieve
common objectives together. This collaboration extends well
beyond industrial settings into fields such as healthcare,
manufacturing, education, precision agriculture and even
daily domestic activities. This paper primarily focuses on
developing a framework for human robot collaboration
within the context of precision agriculture, wherein teams
of manipulation-endowed mobile robots perform agronomic
tasks autonomously together with human co-workers that
cooperate with and supervise the multi-robot team.

The agriculture sector, which traditionally has a lower
technological level, is seeing a recent modernization with the
rise of Al, Big Data and robotics [1]. The most widespread
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integration of these technologies nowadays is in the field
of UAVs, which can be used to automate the process of
inspection of crops [2] and to facilitate spraying of liquids,
like water, fertilizer, herbicides, and pesticides [3]. One of
the main benefits of increasing automation is that large teams
of robots can be used to cover a larger area in a more
cost-efficient manner, e.g., through drone swarms [4]. In
addition, the development of specific grippers for pruning [5]
and vision algorithms for the detection of complex clusters
of fruits [6], together with mobile platforms capable of
traversing the challenging environment of agricultural fields
[7], and the recent societal interest on advancing the sector
through different funding opportunities and competitions
[8], have allowed researchers to start considering the more
complex planning tasks related to precision agriculture.

A key requirement for enabling natural and seamless
human-robot collaboration in performing complex tasks is
the ability to provide abstract real-time mission specifications
to the robots in a manner that is easily interpretable to the
human collaborators, and yet unambiguous to the robots.
Such requirements are particularly common in a precision
agriculture setting, wherein robot tasks are dynamically
determined by the human collaborators and communicated
in real time, like possible interactions among human and
robots which have to be done in a safe manner [9], immersive
teleoperation [10] and social-aware robot navigation [11].

Over the past decades, Linear Temporal Logic (LTL) [12]
has emerged as a conventional method for specifying the
complex behavior of robotic systems. It is particularly effec-
tive since it provides rich syntax to encode complex tasks into
LTL formulas that are close to natural language, facilitating
their utilization, for instance, with speech-based commands.
A plethora of algorithms have been developed to tackle the
planning and control challenges inherent in systems governed
by LTL specifications [13], alongside the development of
several software toolboxes [14], [15]. Despite the significant
achievements, the application of formal methods has been
confined to controlled lab settings. Real-life settings like
agriculture present a list of complexities surpassing those of
controlled laboratory conditions. For instance, ensuring the
precise localization of robots becomes more challenging due
to unpredictable and dynamic surroundings. Furthermore,
various constraints such as limited resources, environmental
variation, and safety considerations further complicate the
effective deployment of robotic systems.

In this paper, we investigate human-robot collaboration in
the context of precision agriculture and the EU CANOPIES



project [16], where LTL is proposed to concisely specify
the desired agronomic tasks. It is built upon our previous
work [15], [17], where essential adaptations are proposed to
deal with the practical implementation challenges imposed
by the field. Through our investigation, we seek to overcome
the challenges posed by real-world scenarios and propose
strategies to enhance the applicability and robustness of LTL-
based approaches. To the best of our knowledge, this is the
first successfull application of formal methods to complex
field environments.

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Linear Temporal Logic

LTL formulas over a set of atomic propositions (boolean
variables) AP are recursively defined as ¢ := T |a| @1 A
w2 || O¢ | ¢rUpa, where T := true, a € AP, O
(next) and U (until). Other useful operators are the Boolean
connector disjunction V, = (implication) and temporal op-
erators ¢ (eventually) and [J (always). An LTL formula can
be evaluated to be true or false over an infinite-length word
made of subsets of AP, ie., over 0 = ogoy... € (247)%.
To see the full syntax and semantics of LTL, as well as the
derivation of the operators see e.g., [12].

Definition 1. [I8] A nondeterministic Biichi automaton
(NBA) is a tuple B = (S, So, 24,6, F), where S is a finite
set of states, So C S is the set of initial states, 24P s the
input alphabet, § : S x 247 — 25 is the transition function,
and F C S is the set of accepting states.

An infinite run s of a NBA is an infinite sequence of
states s = spsj... generated by an infinite sequence of input
alphabets 0 = gpo7y... € (2Ap)w, where sg € Sp and sx41 €
d(sk,0k), Yk > 0. An infinite run s is accepted by B if and
only if Inf(s) N F' # (), where Inf(s) is the set of states that
appear in s infinitely often. There exist fast translation tools
to convert LTL formulas to NBAs [19].

B. Agent Model and Task Specification

Consider a multi-agent system with N agents indexed by
7 =1{1,2,3,...,N}. The dynamics of agent i is given by
; = fi(x;,u;), where x; and u; are the state and input
of agent ¢, respectively. Denote by W the workspace of
the multi-agent system. Then, the agent model is created
by discretizing the workspace W into regions, each with
allowable transitions. These transitions are constructed using
the agent’s dynamics f;. To capture the transitions between
regions as well as other types of region-specific actions such
as “pick/drop an object”, we propose to abstract the dynamics
of each agent ¢ € 7 using a weighted Finite Transition
System (WFTS) 7;. A wFTS [20] is a tuple 7; = (Q;, X;, —>;
,qb, AP;, L, W;) where Q; = {q1,...,qn} is the finite set
of states; ¥; is the set of actions; —;C Q; X X; X Q; is
the transition function; qé is the set of initial states; AP; is
the set of atomic propositions for T;; L; : Q; — 24%% is the
labeling function; W; : Q; x ¥; x @Q; — RT is the weight
function as cost of transition in —;.

To allow for region-specific actions, guard functions G
are used to identify allowable transitions in the wFTS, such
that (g;, 04, q.) € if and only if G;(g;,0;) = T.

The high-level agronomic tasks are represented as LTL
formulas o = @74 A p*°ft where "¢ are the hard tasks
that should be strictly satisfied, such as safety requirements
for obstacle avoidance, and <psof t are the soft tasks which are
optional and can be violated if needed. The LTL formulas
are then converted into a hard Bynara and soft B sos+ Biichi
automatons which are combined as B, = B nara X Bsost. A
parameter 3 € R is used to define the penalty for violating
the soft tasks [21].

C. Objectives

In our previous work [15], a ROS software package has
been designed for human-in-the-loop (HIL) planning and
control under LTL specifications. It is worth noting that this
package was primarily designed for controlled laboratory
environments. There are several challenges to implement it
to complex, real-world agricultural environments. Workspace
discretization from maps based on SLAM may be imperfect
due to inaccuracies in GPS systems and LiDAR sensors.
Communication issues can arise due to the limited network
bandwidth, making it unreliable for robots to share location
information. Finally, the planner divides the field into specific
regions, but localization inaccuracies sometimes place the
robot outside these areas, preventing planner initiation.

Our goal here is to design a ROS based framework for
the planning and control of robotic systems in the domain
of precision agriculture. We adopt a HIL approach, enabling
humans to both adjust the high-level plan in real-time and
assume direct control over the robots’ low-level functions.
Our aim is to 1) develop an approach for each agent ¢, which
is capable of reacting to human inputs—even those that may
pose potential risks—while ensuring safety and LTL task
satisfaction and 2) engineer the ROS package to not only
generate plans and control mechanisms for each agent ¢,
but also to effectively tackle the aforementioned challenges
commonly encountered in agricultural environments.

III. MULTI-ROBOT TASK PLANNING WITH HUMANS IN
THE SHARED WORKSPACE

A. Methodology

The overall framework consists of high-level motion plan-
ning, low-level navigation, and online replanning. Concep-
tually, the high-level motion planning takes in user-specified
robot tasks (LTL formula, and later translated to a NBA)
and robot models (WFTS), and generates a high-level plan
and action sequence based on the product automaton from
the NBA and the wFTS. These high-level actions are then
implemented by low-level navigation stack. In case of deriva-
tions from original plans or unforeseen scenarios, the online
planning is activated that yields a new correct plan.

1) High-level motion planning: Initially, an LTL-
satisfying plan needs to be generated for each robot i. Given
the wFTS 7; for each agent ¢ € Z and the Biichi automaton



B, the discrete plan for ¢ is obtained by first computing the
Product Biichi Automaton (PBA) A%; defined as

?IJ =B, 0T = (‘972-7’571-3’ S%,07F%7W%> )

where Sh = S x Q;; ((s,q),(s'.¢)) € &% iff Jo € 4,
s' € d(s,0) and 30; € By, (q,04,¢') €=i5 Sp g = So X ¢
is the set of initial states; 5 = F x Q; is the set of accepting
states; Wh : 65 — RT, Wh((s,q),(s',q")) = Wi(q.¢').

Afterwards, a Dijkstra-based algorithm with the PBA Aé;
is used to find an optimal infinite run [22] and project it
back to the wFTS 7; using model-checking methods [23].
The runs rp = pop1...pk (Pk+1..-PnPr)* have a prefix-suffix
structure, where the prefix is executed only once from the
initial state py € S;',.O to the accepting state py € ]-'7@, and
the suffix is repeated infinitely from the accepting state pj
to itself.

2) Low-level navigation stack: The navigation and lo-
calization software stack provided by Universita Roma
Tre—which is not yet published—was used to implement
the high-level actions related to motion provided by the LTL
planner. The stack provides localization capabilities using the
onboard Lidars with landmark-based SLAM, and navigation
with a Model Predictive Control (MPC) motion planner for
reaching positions in the field while avoiding collisions. The
navigation stack also provides control subroutines for special
cases, such as docking with another robot to exchange boxes.

A static map was generated by the navigation and localiza-
tion stack that contains information about static obstacles and
relevant landmarks, and was later used by the LTL planner.
The algorithm also returns the location of the robot with
respect to the field reference frame during runtime for the
LTL planner to use.

The MPC controller takes into account additional low-
level locomotion-related constraints, such as minimizing ro-
tations to avoid marking the terrain excessively and keeping a
safe distance from the plants. The controller then calculates
the trajectory for a given goal position, and returns status
information.

3) Online replanning: Note that the initial plan for each
robot ¢ does not account for the motion of other robots
and humans in the environment. Thus, online replanning
is necessary during the implementation. Each robot ¢ can
identify conflicts using the onboard Lidar sensors. Whenever
a possible collision is detected, the LTL planner first conducts
replanning, which finds a new accepting run for the PBA A,
that is collision-free. Then the MPC controller inside the
navigation stack performs a collision avoidance maneuver
which brings the robot to the new planned trajectory.

For the HIL context, we consider that the humans can 1)
specify new tasks to the robot in real time and 2) take over
the control of the robot. The former is achieved by assigning
appropriate arguments/options when bringing up the system
and choosing among a set of pre-specified formulas. The
latter is achieved through a low-level scheme based on
mixed-initiative control (MIC) formulation [17], such that

u 2 up(x) + k(2)up(t), (1)

where u,(z) is the planner input at state x, up(t) is the
human input at time ¢, and k& € [0,1] is a smooth function
indicating how close x is to a trap state. A trap state is
defined as a PBA state from which the Biichi acceptance
condition cannot be fulfilled. The set of all trap states for an
agent i is denoted by !, which has an associated distance
metric to track the proximity of the current state to O} for
T;. To ensure that the MIC does not violate any hard task
©hard, the new input must guarantee that the agent never
reaches O} no matter the human input provided. The function
k(x) approaches 0 (and the autonomous control takes over)
when the state x is in proximity to O%, and k(z) — 1 (and
the human input is also applied) otherwise. To implement
these inputs, the navigation stack also includes a joystick
functionality that allows a human to drive the robot through
direct commands.

B. Software Architecture

To use the LTL planning capabilities with the robots, the
ROS LTL automaton package from [15] was used. This
package requires a state machine that defines the transition
system of the robot in the vineyard setting and an LTL
formula that defines the tasks. The LTL formula accepts both
hard and soft constraints on the tasks.

The LTL planner then creates the corresponding Biichi
automatons automatically and finds a prefix and suffix plan
if it exists. The planner keeps track of the plan’s current
state and provides the next symbolic action to take to move
to the next planned state. Once the prefix plan is completed,
the suffix plan will be repeated until terminated. The planner
will trigger an online re-planning if the current state of the
robot deviates from the predicted transition. A separate node
was used to map the observations from the localization and
navigation stack, as well as any other onboard sensors that
detect the state of the robot, to the symbolic states defined
in the transition system of the planner. The symbolic actions
provided by the planner can then be interfaced and executed
by the appropriate hardware and its controller.

To generate the workspace W, the robots must first explore
the vineyard and create a static map using the localization
software stack. Afterwards, the terrain is discretized in a grid
of a size specified by the user and the allowed transitions
between regions are calculated accounting for obstacles that
the static map provides. These transitions are gotor actions,
which allow the robot to go from its current grid state to
grid state r.

Additionally, a transition system for the robot load state is
created (please see Fig.[I). In order to encode the relationship
between the different transition systems, a guard G; can be
specified for the actions, i.e. the action can only be performed
in a specific state of W. For example, the action get grapes
can only be used in regions where vines with grapes are
located. The total transition system that is then fed into the
planner is the product transition system of both the robot load
state and the workspace grid state. All these components and
dependencies can be seen in Fig.



Fig. 1. Diagram of the states and actions for the robot load transition
system in the vineyard.
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Fig. 2. Diagram of the software stack, its dependencies, inputs, and outputs.

IV. FIELD EXPERIMENTS

This section presents a real-world application use case
[24] for the LTL task planner described in the previous
section. We successfully demonstrate key aspects of our plan-
ner through field experiments involving human-multirobot
cooperation within the context of precision agriculture.

A. Robotic task planning for precision agriculture

This research was carried out as a part of the H2020
European project CANOPIES [16], with an overarching aim
to design an integrated system in the field of precision
agriculture for permanent crops where farm workers can
efficiently collaborate with multi-robot teams to perform
agronomic interventions such as harvesting or pruning in
table-grape vineyards. These agronomic tasks are specified to
manipulation endowed mobile robots through temporal logic
syntax, which accordingly plan their action sequences in real
time while accounting for dynamic entities such as humans
and other robots. Besides acting as moving obstacles, the
humans also collaborate with the robots in sub-tasks such
as loading/unloading boxes from the robots. Furthermore,
humans can specify new tasks to the robots in real time.

B. Experimental setup

The experiment field is shown in the bottom panels of Fig.
Bl The vine stems and pergola support poles are placed in a
uniform lattice, with a spacing of approximately 2.8m. Prior
to our experiments, the robots generate a 2d map of this
workspace using SLAM techniques, which is then used to
discretize the field as shown in the top panel of Fig. [3] The
regions in the vineyard for performing agronomic actions
such as pick empty box, get grapes, and deliver filled box are
identified a priori and the corresponding cells are marked on
the 2d grid map (“r45”, “r43”, and “rl1”, respectively).

We use two mobile robots for our experiments, each of
which is equipped with two LIDAR sensors, GPS antennas,
IMU sensors (please refer to Fig. f(a)), which are utilized by
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Fig. 3.  Vineyard in Aprilia (Italy) where the field experiments were
conducted for validation of the LTL planner. The vineyard workspace is
discretized into a 10 x 10 grid. Each white cell is considered as a state. The
grey cells contain static obstacles marked by black dots (i.e. pergola poles
that support the vines as seen in the bottom right panel) and are excluded
from the state transition map. The colored cells (rl, r43, r45) represent the
only regions in which the specified load action can be performed.

the SLAM and navigation modules onboard each robot. The
navigation module in particular interacts directly with our
LTL task planner, providing it with odometry information, as
well as executing the high-level commands generated by the
planner as outlined in Fig. (b)] The SLAM and navigation
modules run on an intel Next Unit of Computing (NUC) and
the planner runs on another dedicated NUC. Additionally,
these planner NUCs on each of the robots can communicate
with a remote laptop via WiFi network, allowing humans to
supervise as well as specify tasks to the robots in real time.

C. Results

We assign tasks to each of the robots via LTL formulas
as follows

Robot 1 :
Robot 2 :

(D(}loaded grapes) A (DOunloaded)
(D(}rll) A (D(}rSl)

which respectively translate to ‘“always eventually load
grapes and always eventually unload grapes,” and “always
eventually go to region r11 and region r51.” The initial state
of robot 1 is (123, “unloaded”) whereas robot 2 starts at
state (161, “unloaded”). As the robots perform these tasks, a
human in the shared workspace interacts with the robots in
different ways: firstly by acting as a dynamic obstacle (Fig.
[5(a)l and secondly, by collaborating in agronomic sub-tasks
of loading and unloading box (Fig. 5(D)).
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(®)

Fig. 5. Human-robot interaction scenarios in the experiment. (a) The
human in the shared workspace acts as a dynamic obstacle and activates
safety controllers in the robots, forcing them to perform collision avoidance
maneuvers and replan. (b) The human collaborates with robot 1 in loading
the box, wherein the robot reaches the loading station and awaits human
action, following which it continues with rest of its assigned task.

The LTL plan generated for robot 1 is as follows:

Prefix plan: gotor24 — gotor2b — gotor3bh —
gotordd — pickbox — gotordd — gotordd —
get grapes — gotor33 — gotor23 — gotorld —
gotor3 — gotor2 — gotorl — deliver filledboxr —
gotorll. Suffix plan: gotor21 — gotor22 — gotor23 —
gotor24 — gotor25 — gotor3b — gotordd —
pickbor — gotordd — gotord3d — getgrapes —
gotor3d3 — gotor23 — gotorl3d — gotor3 — gotor2 —
gotorl — deliver filled box — gotorll.

Similarly, the LTL plan generated for robot 2 is as follows:
Prefix plan: gotor5l — gotordl — gotor3l —
gotor2l — gotorll — gotor2l — gotor3l —
gotordl — gotorbl — gotordl. Suffix plan: gotor3l —
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Fig. 6. The sequence of the robot motion to avoid a human in the field.

Due to the interaction, the robot ends up in the region outside of the plan,
r42. Thus, it replans and executes the new LTL plan to achieve the given
task.

commands | motor
| Planner 1 [, | Navigation 1 I
odometry states
NUC 1
commands | ————— motor
| Planner2 | | Navigation 2
odometry states Simulation
NUC 2 Laptop
Fig. 7. Robot software stack with simulator.

gotor2l — gotorll — gotor2l — gotor3l —
gotordl — gotorbl — gotordl.

As both the robots follow their respective plans, the
planner also keeps track of the robot states in real time to
monitor any possible deviation from the planned sequence
of actions. Deviations may arise, for example, when the
robot faces an obstacle and is forced to perform a safety
maneuver to avoid collisions as shown in Fig. [5(a)] In such
a scenario, when the robot transitions to a state different from
their intended state, an online re-planning is triggered and the
LTL planner generates a new action sequence starting from
the current state of the robot. Our experiment demonstrates
this online re-planning in robot 2. As illustrated in Fig. [6]
while the robot 2 is at “r41”, it is expected to transition
to “r31” through the action goto r31 as per its LTL plan.
However, when the human moves towards the robot, the
collision avoidance controller within the navigation module
drives the robot to state “r42.” The mismatch between the
expected and current state leads to a re-planning, which
ultimately steers the robot 2 back to its original track once
the human has safely moved away. For more details, please
refer to the video in [24].

D. Gazebo Simulator

The field experiments were also reproduced in a Gazebo
[25] based simulator. Gazebo is a physics-based simulator
that can be used to simulate sensors and actuators and their
interaction with the environment. The simulation is set up
with a virtual vineyard with green pillars simulating grape
vines. The robot is simulated as a simple differential drive
robot with cylindrical drive wheels and two caster wheels.
The LIDAR and IMU sensors are also simulated.

For the software stack, the simulation uses the same LTL
formula, LTL planner, network configuration and low level
navigation stack. The LTL planners runs on independent and
identical NUCs as in the field experiment. The navigation



(b)

Fig. 8.
developed in the Gazebo simulator. The human commands the low level
controller to go in the direction of the red arrow while avoiding any
trap state. (a) First instance. (b) Second instance.

Two instances of human input provided through the MIC module

stack and simulated hardware run on a separate computer.
This mimics the network structure from the LTL planner’s
point of view. The LTL planner receives and sets identical
data to and from the navigation stack as in the field experi-
ment. This is illustrated in Fig. [7}

The simulator was used to test the HIL MIC module
shown in (I to ensure the system does not enter any of the
trap states. Fig. |§| and the video [24] shows two instances
where a human low level command is inputted through the
command velocity and the MIC module provides the desired
motion while ensuring that no trap state is reached. The
MIC module works in tandem with the navigation stack to
prevent collisions which is also considered a trap state.
When the human input stops, the LTL planner replans and
the robots resume their original task.

V. CONCLUSION

In this paper, we presented a ROS based framework
tailored for the advanced planning and control of HIL
multi-agent systems in precision agriculture. Through LTL
encoding of agronomic tasks, our system generates correct-
by-design high-level robotic plans. In addition, we allow
human operators to dynamically adjust these plans or assume
direct control while ensuring adherence to essential task
specifications. Empirical validations were conducted within
the complex context of a real vineyard, where we demon-
strated the practical viability, efficiency and robustness of
our approach for agricultural operations and human-robot
collaboration, ensuring that both predefined objectives and
emergent human preferences are optimally balanced.
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