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Abstract—Adaptive systems enable legged robots to cope with
a wide range of environmental settings and unforeseen events.
Existing reactive methods adapt either the walking frequency or
the amplitude to only simple perturbations. This paper proposes
an adaptive mechanism for central pattern generator (CPG)-
based locomotion control that online-reacts to both internal and
external soft constraints by adapting both the frequency and
amplitude of driving signals. Our approach, namely GRAdient-
Based shape adaptive control (GRAB), utilises real-time sensory
signals for adapting the dynamics of the CPG. GRAB reacts
to locomotion soft constraints given in a loss function. It can
quickly adapt CPG’s dynamics variables to reduce such a loss,
with a gradient-descent-like update step. The update perturbs
the shape of the driving signal, which implicitly changes both
frequency and amplitude of the robot locomotion pattern. We test
the GRAB mechanism on a hexapod robot and its simulation,
where we demonstrate its several benefits over a state-of-the-art
adaptive control baseline. First, we show that it can be used
for reducing the tracking error by simultaneously changing the
walking amplitude and frequency. Also, GRAB can be used for
limiting the maximum torque/current, preventing motor damage
from unexpected perturbations. Finally, we demonstrate how
GRAB can be utilised to naturally adjust the robot’s walking
speed while taking into account multiple constraints, including
target walking speed, external weight perturbations, and the
robot’s physical limit.

Index Terms—Central Pattern Generators, Adaptive Control,
Fail-safe Protection, Gradient Descent

I. INTRODUCTION

THE challenge of legged-locomotion control comes with
the large space of complex interaction dynamics be-

tween robots and their environments. Recent deep learning
approaches tackle this problem using larger and more complex
policies [1]. However, the robustness of these policies depends
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Fig. 1: GRAB controls the locomotion of the legged robot by perturbing the
CPG dynamics in a direction that minimises a loss function. At each step, the
state is pulled by the force from both the CPG dynamical surface (shown in
a green arrow) and the force from the gradient of the loss (shown in a blue
arrow), resulting in a resultant force (shown in a red arrow). As a result, the
new trajectory complies with the pre-specified soft constraints as well as the
original walking pattern.

heavily on the quality of the training data. In contrast, bio-
inspired locomotion control tackles this problem using simple
control rules with online adaptive mechanisms to handle the
changing dynamics of the test problem. These rules are hand-
crafted and derived from biological knowledge and real-world
observations, which are customised to the problem at hand.
This makes them rather brittle to a new type of robots and
constraints. In this work, we aim to create a more general
framework for implementing a more general bio-inspired
adaptive mechanism.

There are also model-based [2], [3] and data-driven control
approaches [4] that can flexibly and efficiently adapt robot’s
walking patterns to external perturbations [3], [5]. However,
these approaches also need very complex controllers, which
are either computationally expensive or very difficult to con-
struct as they require a large number of high-quality data
samples or faithful models of the robots and their environ-
ments. Here, we develop our adaptive controller from the bio-
inspired perspective, where the focus is on the simplicity of
the mechanisms allowing it to be easily implemented on the
robots with varying computing power and morphology.

Notable bio-inspired methods such as the central pattern
generator (CPG; [6], [7]) and the dynamic movement primitive
(DMP; [8]) can be used to create complex walking patterns
with relatively simple control mechanisms. The most success-
ful studies use rule-based adaptation methods that are tailored
to the type of perturbation, and the morphology of the robots
[9], [10], [11]. While, the more generic adaptive rules, e.g.
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reactive DMP [12], [13], can only be used to stop or slow
down the control execution without much consideration to
the desired behaviours and external dynamics. There are also
several works that add customised reactive feedback terms into
the DMP [12], [13]. However, these reactive DMP are tailored
to be specific to the robot and the task at hand.

Our work extends the line of research in CPG-based con-
trollers [6], [7], which is not online-adaptive in its original
form. Other extensions to the CPG-based control that allows
it to be online-adaptive can be categorised into two groups:
(i) frequency adaption [14], [9], [15], [16], [17] and (ii)
amplitude adaptation [18], [19]. Frequency adaptation is useful
for adapting the speed of the locomotion and for energy
efficiency. Amplitude adaptation, on the other hand, can be
used as a safety mechanism as well as to improve traversal on
rough terrain.

Our recent work, Dynamical State Forcing CPG (DSF-
CPG) [20], is the first CPG-based reactive controller that
can simultaneously adapt both frequency and amplitude in an
online fashion. Although, there are other works that change
both frequency and amplitude with their learning ability1.
These learning-based methods are not reactive and need a
longer time-scale to perform the learning-based adaptation
[21].

This ability to reactively and simultaneously adapt both
frequency and amplitude is done by directly modifying the
control signal at the level of the CPG dynamics. DSF-CPG
periodically resets the dynamical state of the CPG to the
position of a weighted average between the command signal
and the actual robot reading signal in order to reduce the
tracking error. The key weakness of DSF-CPG is that it
requires an inverse mapping between the dynamical space and
the robot space. Also, it can only be used to reduce tracking
error, whereas we would like it to be more widely applicable.

To remove these limitations of DSF-CPG, we propose a
novel adaptive mechanism, namely GRAdient-Based shape
adaptive control (GRAB), which is intended to be a generic
adaptation rule that can flexibly online adapt the shape of the
driving signal towards desired behaviours (see Fig. 1). Inspired
by the deep learning framework, we take a top-down approach
by putting an abstract description of the desired behaviour at
the core of the adaptive mechanism via a given loss function.
The adaptation works by continuously perturbing the CPG
driving signal in a direction that reduces the loss. As a
mechanism, we propose to use the gradient of the loss as a
perturbation force that can be combined with the force in the
attractor dynamics of the CPG. This combination draws out
a new trajectory, which creates a driving signal that complies
with both the walking pattern (as created by the CPG attractor)
and the desired behaviour (as specified via the loss function).

The contributions of this work can be summarised as follow:

• We propose a novel online-adaptive mechanism that can
spontaneously adapt the shape of the driving signal via

1The term ”adaptation” is sometimes used to refer to long-term changes
in the dynamics (i.e., learning). In this paper, we use the term adaptation to
refer to changes to the dynamics both with and without learning.

the combination of the gradient perturbation and the CPG
attractor dynamics. While this work could be seen as an
extension to our previous work (DSF-CPG), GRAB has
an entirely different implementation than DSF-CPG, and
thus offers a considerably broader range of applications.

• We show that a simple loss function of tracking error re-
duction can be used to create adaptive walking behaviours
that comply with external perturbations to the robot.

• We demonstrate that the GRAB mechanism can be used
to limit joint torque, which can help prevent motor failure
in a situation where heavy force is applied on the robot.

• We demonstrate that the GRAB mechanism can handle
an additional speed soft constraint. This shows GRAB’s
ability to comply with both internal and external con-
straints2, which is useful for controlling the robot.

II. METHOD

A. Central Pattern Generator

Central Pattern Generator (CPG) is a mathematical model of
coupled neural oscillators, which can generate a periodic signal
and can be used as a target pattern for locomotion control
[6]. In this work, we use a type of CPG called the SO(2)-
network [22]. The SO(2) network can be described as two
coupled neurons. The activities of both neurons (a1, a2) and
their outputs (o1, o2) are described by the following update
equations:[

o1
o2

]
← tanh

[
a1
a2

]
= tanh

[
w11o1 + w12o2
w21o1 + w22o2

]
(1)

where the weight matrix for the SO(2)-network depends on
two variables ϕ and α:

W =

[
w11 w12

w21 w22

]
= α ·

[
cos(ϕ) sin(ϕ)
−sin(ϕ) cos(ϕ)

]
(2)

α is set to a value larger than 1 to create a limit cycle
dynamics. ϕ is a parameter that can determine the frequency
of the oscillation. To generate a desired trajectory, we take
the oscillating outputs o1, o2 and transform them through a
post-processing function into a locomotion pattern. In this
work, we use simple linear functions (yi = moi + c) as our
post-processing functions, which are hand-tuned to create a
suitable locomotion pattern. We then use this pattern as a target
driving signal for a low-level position controller (e.g., a PID
controller).

B. GRAdient-Based Shape-Adaptive Control (GRAB)

In order to incorporate adaptive behaviour into a CPG, one
could implement a higher-level mechanism that uses sensory
feedback to either modulate the oscillation frequency via the
parameter ϕ [9], [15], [16], [17] or the driving amplitude
via the post-processing function [18], [19]. Alternately, we
propose a novel adaptive CPG, namely GRAB, which incor-
porate the adaptive mechanism directly into the dynamics of
the activity of the CPG’s neurons.

2We use the term constraint to refer to a soft constraint, as opposed to a
strict condition, throughout the paper.
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Fig. 2: CPG with GRAB adaptive mechanism can be represented as a closed-
loop system between the neurons and the robot system. As shown in the blue
and red lines, the target signals from o1 and o2 are processed using the post-
processing function and used as a driving signal for the BC and CF joints.
The joint sensory feedback will be monitored from joint BC0 and CF0, as
shown in the dashed purple line. The joint sensory feedback is then used to
calculate the loss function in order to change the neural dynamics of the CPG.

GRAB’s ability to perturb the dynamics directly allows it to
be reactive and, therefore, adapt quickly to any instantaneous
perturbation. It can also modulate the shape of the driving
signal (as illustrated in Fig. 1). The key component of GRAB
is the use of a given loss function and its gradient with respect
to the dynamic variables. The loss function can be understood
as an abstracted description of how we would like the pattern
to be adaptive. Inspired by the stochastic gradient descent
method [23], the gradient of the loss is used to move the
oscillating dynamic closer to the desired behaviour. Equation
(3) describes GRAB as an additional update equation of the
SO(2) dynamics.[

o1
o2

]
←

[
o1
o2

]
−
[
γ1
γ2

]
⊙
[ ∂L
∂o1
∂L
∂o2

]
(3)

where γ1, γ2 are hyper-parameters of the updating gains (or
step-sizes). ⊙ is an element-wise product operator. L is a pre-
defined loss function. For example, L can be defined with a
constraint such as a measure of mismatch between the desired
behaviour and the current state of the robot. The combined
update equations can also be represented with a discrete-time
dynamics equation as:

[
o′1
o′2

]
= tanh

[
w11o1 + w12o2
w21o1 + w22o2

]
−
[
γ1
γ2

]
⊙
[ ∂L
∂o1
∂L
∂o2

]
(4)

where o′ is one time-step ahead of o.
The gradients of the loss force the outputs of the neurons to

the direction that reduces such a mismatch. Fig. 1 illustrates
the adaptive mechanism of GRAB. The state of a particle in
the phase space is driven by two forces: the force due to the
dynamical surface of the SO(2) and the additional force from
the gradient descent to the direction that minimises the loss
function, resulting in a new trajectory.

As a side note, the gradient-based perturbation mechanism
used in GRAB has a striking similarity to the Tagotae method
introduced by Owaki et al. [24]. The Tagotae method is used
for adapting the phases of the leg controllers, which are needed
to be coordinated with each other in the multi-leg decentralised

locomotion control. Despite the similarity in the mechanism,
GRAB aims to be a generic adaptive mechanism that can
react to both external and internal perturbations. Therefore,
the shape-adaptive ability is an important property of GRAB;
this has not been explored in the Tagotae method, which only
considers phase adaptation in a system of phase oscillators.

C. Tracking Error Reduction

The loss function is central to our method as it determines
the desired adaptive behaviour of the locomotion trajectory.
First, we explore a simple loss that attempts to reduce the
tracking error, which is an important source of undesired
motion in a robot’s locomotion [9]. We define the tracking
error as the square difference between the driving target
position and the actual robot’s joint position:

L =
n∑

i=1

1

2
(Pn − P ′

n)
2 (5)

where Pn is the target position and P′
n is the actual robot

position. n represents the nth driving joint of the robot.

D. Speed Modulation

It is also possible to add multiple constraints to the trajectory
dynamics. In our experiments, we investigate whether we
can modulate the speed of the locomotion through GRAB
mechanism. This is particularly useful when we want to
perform semi-automatic teleoperation, while still enabling the
robot to adapt to the external and internal perturbations.
We cannot naively set ϕ to adjust the walking frequency
because each robot can only support a range of ϕ due to
the hardware limitation [25]; this could lead to an undesired
walking behaviour if the hardware cannot keep up to the
control target [9].

We define the speed modulation loss as the mismatch
between our desired speed and the robot driving speed. In
addition, we regularise the dynamics with the tracking-error
reduction term. Intuitively, with a speed-up command, the
tracking-error reduction would implicitly decrease the walking
frequency to reduce the error, while the speed modulation loss
increases the frequency to speed up the robot. Therefore, the
robot’s walking frequency would reach a certain value that
cannot be increased any further due to the tug-of-war between
the two. The loss function and the dynamic update are defined
as:

L =
1

2
(Vtarget − Vdriving)

2 +
n∑

i=1

1

2
(Pn − P ′

n)
2 (6)

o1o2
ϕ

←
o1o2
ϕ

−
γ1γ2
γ3

⊙
 ∂L

∂o1
∂L
∂o2
∂L
∂ϕ

 (7)

where Vtarget is a velocity target value set by the robot’s
operator; this can be seen as an internal speed-constraint of
the robot. This desired speed can be realised by increasing
the parameter ϕ, which controls CPG’s default oscillating
frequency. Thus, we estimate the robot’s driving speed with
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Vdriving = kvϕ. It is important to note that the robot’s walking
frequency depends on both driving force ϕ and the gradient
from tracking error loss.

E. Bounding the CPG Dynamics

An important property of SO(2) is the bounded periodic
dynamics that is generated from its stable limit cycle property.
By perturbing the signal with the gradient term, we run into the
risk of driving the dynamics into an unstable region resulting
in a divergence behaviour.

To reconcile this problem, we must bound the perturbation
to a certain value. We hypothesise that if the force acting
on the particle is dominated, to a certain degree, by the
dynamic force, |Fdynamics| > |Fgradient|, then the trajectory
stays bounded. One possible method to reduce the size of
|Fgradient| is to use the method of gradient clipping, where
|∂L∂ϕ | or |∂L∂o | are capped below a specific maximum value, Ω,
to avoid the gradient term becoming too large. Empirically,
in our experiments, the dynamics are always bounded even
without the capping. However, we find that it is useful to cap
the gradient |∂L∂ϕ | in the speed modulation mechanism because
it simplifies the parameter-tuning process. We discuss about
the value selection of this parameter in Sec. III.D.

In a typical CPG network, ϕ is a fixed parameter and, there-
fore, does not have a default dynamics (i.e., |Fdynamics| = 0).
In our speed adaptation mechanism, this fact leads to the
domination of the gradient term Fgradient, which create a
divergence behaviour. To this end, we define the default
dynamics for ϕ to be a point attractor dynamics pointing to a
default value ϕ0,

ϕ← ϕ−kϕ(ϕ− ϕ0). (8)

As one can see, GRAB can be used to adapt a CPG parameter
by turning it into a bounded dynamic variable. As a side note,
it is advisable to avoid adapting α because α has a non-trivial
effect on the shape of the SO(2); there is a range of α that
creates unstable SO(2) dynamics.

III. SIMULATIONS AND EXPERIMENTS

We investigate three questions in our experiments:
• Q1: How does GRAB adapt the walking signal of a robot

when a load is added to the robot?
• Q2: How good is GRAB at reacting to an external force

that can potentially damage the robot’s motor?
• Q3: Can we generalise GRAB mechanism to be reactive

to other internal constraints, such as the speed of the
robot?

By studying these questions, we can understand more about
the situations where we would prefer GRAB adaptive mecha-
nism over other mechanisms, such as the reactive DMP [12],
[13]. Also, we want to understand potential applications that
GRAB could be used for in future work. 3

We evaluate our method using the MORF robot (Fig. 3,
[26]). MORF is a hexapod with six legs; following a morphol-
ogy of an insect, each leg of the robot consists of three actuated

3The experiment video can be viewed at www.manoonpong.com/GRAB/
SupplementaryVideo.mp4

joints: body-coxa (BC), coxa-femur (CF) and femur-tibia (FT)
joints (see Fig. 2). The driving signals from the SO(2) neurons
are transformed through linear (post-processing) functions, F1

and F2, to create suitable joint angles, y1 and y2. These signals
are used to drive BC and CF joints, respectively. BC performs
a horizontal leg swing motion, while CF performs a lifting
motion. The FT joint is fixed at a specific position. There
is a phase-shift of π

2 radian between y1 and y2 to create an
appropriate intra-leg coordination. 4

(a) MORF robot in real world (b) MORF robot in simulation

Fig. 3: MORF: Hexapod Robot Platform developed by Thor et al [26]. The
robot has a weight of approximately 4 kg.

To investigate the adaptive mechanism, we compare GRAB
with a periodic dynamic movement primitive (pDMP) [27],
which is a state-of-the-art method for adaptive control, and
the non-adaptive SO(2) [22] as our baselines.

pDMP[27] can be described as follows:

ż = Ω(α(β(−y)− z) + f(ϕ)) (9)

ẏ = Ωz(1 + αr(L))
−1 (10)

ϕ̇ = Ω (11)

where z is an auxiliary variable, y is the joint angle, ϕ and Ω
are the phase and frequency, respectively. α = 8 and β = 2
are the positive gain, f is the forcing function, which create
the desired trajectory (see [27] for more details). For easy
comparison, DMP error function, L, is defined as (5) with
a suitable coupling gain for this error function αr = 1000.
For the implementation on the robot, GRAB (green box) is
replaced with pDMP, in Fig. 2, where the connections between
target signals and the robot remain the same.

To achieve similar default robot locomotion patterns, before
the perturbation, we manually tune the hyper-parameter of
each method. First, we set ϕ = π

12 , α = 1.4, γ1 = γ2 = 2.0
for GRAB, which are chosen such that it create a stable
walking pattern. Then, we use the joint signal from GRAB
as a reference trajectory for pDMP. The hyper-parameters of
SO(2) are chosen to be ϕ = 0.137, α = 1.23. These are chosen
by manually adjusting the amplitude and the frequency to be
as close to GRAB’s trajectory as possible.

A. Experiment 1: adaptation to an external load

The first experiment is set out to investigate GRAB’s ability
to online manipulate the driving signal under an external
perturbation (Q1). To this end, we investigate MORF’s walking
behaviours under three situations: (i) MORF walks freely
(without load), (ii) a load of 8 kg is added on the back of
MORF and (iii) the load is lifted off (see Fig. 5).

4The GRAB code is available at www.gitlab.com/BRAIN Lab/public/grab
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Method Symbols Values Description

GRAB

ϕ π/12 Frequency parameter
α 1.4 CPG shape parameter
γ1 2.0 Gradient gain
γ2 2.0 Gradient gain
γ3 0.05 Gradient gain
kv 5 Frequency-to-speed gain
kϕ 0.01 Point attractor gain
ϕ0 0 Fixed point position
Ω 0.1 Gradient cap

pDMP
α 8 Positive gain
β 2 Positive gain
Ω 1 Time constant
αr 1000 Coupling gain

SO(2) ϕ 0.137 Frequency parameter
α 1.23 CPG shape parameter

TABLE I: Parameters used in the experiments. These parameters are set
such that the default walking behaviours of the three methods have the same
amplitude and frequency.

(a) Phase-space (b) GRAB with and without perturbation

Fig. 4: Comparing the GRAB output signals with and without weight
perturbations. (a) The phase space shows that the GRAB trajectory (dotted
blue line) starts from an initial position and converges to a limit cycle
behaviour. During the perturbation (solid red line), the shape of the limit
cycle has been distorted from the gradient term. (b) The time plot shows that
the perturbed trajectory also has a lower frequency with wider troughs than
the crests and a slightly smaller amplitude than the unperturbed trajectory.

Fig. 4 shows the phase-space plot and the driving signal
comparing GRAB with the weight perturbation and without
the perturbation. We can see in Fig. 5, 6 that, when the
load is added to the robot, GRAB immediately adapts the
shape, amplitude and frequency of the driving signal. The
frequency becomes lower, and the amplitude becomes slightly
smaller. Interestingly, we can see that the periodic driving
signal becomes asymmetric, with the crest being narrower
than the bottom trough. This is because, around the crest, the
robot is lifting the leg up and, therefore, there is a smaller
external force acting on the joints. Fig. 7 shows that GRAB
uses the smallest maximum torque compared to pDMP and
SO(2) controllers.

B. Experiment 2: torque limitation

In this experiment, we investigate GRAB’s ability to pre-
vent motor failure from external forces (Q2). We divide the
experiment into two parts.

a) Leg blocking: In the first part, we investigate the
adaptation to a horizontal force. This is done by attaching
MORF robot to a holder, allowing the legs to move in the air
freely. Then, we block the leg with our hands. Fig. 9 shows
that GRAB can quickly stop the target signal within 1s to
prevent damage. From Fig. 8, we can see that pDMP adapt
the target signal by only reducing the frequency of the signal.
SO(2) does not change the target signal. As a consequence,

Fig. 5: This figure shows the setting of Experiment 1. First, the robot walks
normally for 20 seconds. Then, an 8 kg load is added to the robot. The graphs
show that the robot has to exert more force and uses more current to keep it
walking. GRAB can quickly adapt the robot locomotion pattern to deal with
the added load and to maintain its locomotion behaviour.

Fig. 6: Comparison between GRAB and pDMP in Experiment 1 shows that
GRAB manipulates both the frequency and amplitude of the signal, while
pDMP cannot change the amplitude of the signal. See also Fig. 4b, where the
target signals, before and after the perturbation, are overlaid.

Fig. 7: GRAB is capable of reducing the tracking error of the joint position,
leading to the smallest value of maximum torque in joint CF0, which is the
main joint that carries the weight. The error bar is the standard deviation
from the results of five trials. (* denotes a significant difference with p-value
< 0.05, Kruskal-Wallis’s ANOVA test, Mann-Whitney-Wilcoxon’s post-hoc
test)

the maximum current from pDMP and SO(2) controllers are
higher than GRAB by 37.5% and 54.4%, respectively.
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Fig. 8: GRAB, pDMP and SO(2) in Experiment 2a (leg blocking). GRAB
can quickly stop the target signal when the leg is blocked, whereas pDMP
can only prolong it, and the SO(2) signal remains the same.

Fig. 9: GRAB is adapted to leg blocking, resulting in the driving signal comes
to a halt, as shown in the solid blue line. GRAB also immediately reduces
tracking error to small values.

b) Heavy Weight: In the second part, similar to Ex-
periment 1, we investigate the adaptation to weight during
a walking motion. However, this time, we put in a 16 kg
weight (approximately four times robot weight), which is
heavy enough to prevent the robot from moving ahead. First,
we allow it to walk for 50 cm before adding the weight. Then,
after 10 seconds of carrying the weight, we lift the weight up.
According to the result shown in Fig. 10, the robot drives with
GRAB can stop the driving signal and limit the maximum
torque output.

The result in Fig. 11 shows that our method provides the
least maximum torque and current, allowing the motors to
continue to move after removing the additional weight. On the
contrary, with pDMP and vanilla SO(2) methods, some motors
are shut down, leading them to stop moving (see the video in
the supplementary). This is because Dynamixel motors have
a built-in mechanism that shut the motor down when it is
overloaded.

C. Experiment 3 (simulation): speed modulation

In this experiment, we investigate GRAB’s ability to adapt
to an additional internal velocity constraint (Q3). GRAB’s
mechanism uses in this experiment is outlined in Sec. II-D.

Fig. 10: GRAB is used to adapt the driving target to additional weight. The
robot is walking normally at first; then, a heavy load is applied to stop the
robot from moving. As a result, the robot quickly adapts to a halt state, which
prevents the motors from shutting down and getting damage.

Fig. 11: The results from Experiment 2b demonstrate that GRAB is capable of
preventing the motors from breaking down by reducing the tracking error to
small values, resulting in the lowest maximum torque and current among the
baselines. (* denotes a significant difference with p-value < 0.05, Kruskal-
Wallis’s ANOVA test, Mann-Whitney-Wilcoxon’s post-hoc test)

Here, we implement it in a simulated MORF. We use the
following parameters: γ3 = 0.05, kv = 5, kϕ = 0.01, ϕ0 = 0
and Ω = 0.1. As the robot walks, we vary Vtarget and put a
small weight and a large weight on the robot to investigate its
walking behaviour.

We can see in Fig. 12 that the speed of the robot, as can be
observed from the frequency of the signal, varies according to
the target velocity constraint, Vtarget. As we set Vtarget to be
higher, GRAB gradually increases the parameter ϕ, which is
bounded by the point attractor force.

We can see that there is a drop in the walking frequency
when the robot carries a small weight. It completely stops
when it carries a large weight. This shows that GRAB can
naturally adapt to the robot’s internal and physical constraints.
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Fig. 12: GRAB with internal and external constraints. By incorporating
Vtarget as an internal constraint, GRAB can be used to modulate the
parameter ϕ such that the walking frequency, as well as the driving signal,
comply with both internal constraints (robot’s physical limit and Vtarget) and
external constraint (weight perturbation). During t = 24s to t = 34s, a light
load is put on the robot. A heavy load is placed on the robot during t = 36s
to t = 41s. The frequency is estimated from the BC0 position signal.

Lastly, GRAB can also simultaneously adapt to an external
weight perturbation and revert back to its previous dynamical
state.

D. Experiment 4 (simulation): GRAB parameters

In this section, we discuss the sensitivity and applicability of
parameters required by the GRAB mechanism. Firstly, ϕ and α
are inherited from the SO(2) mechanism. The value selection
of these parameters is the same as SO(2), which is to choose
ϕ that matches the robot’s locomotion speed requirement, i.e.,
by testing with a low frequency ϕ and increases the value
until the observed locomotion speed and tracking error are at
suitable levels, and to select α to be slightly more than one to
avoid the unstable region.

Next, the gradient gain, γ, specifies the sensitivity of GRAB
to the error term. Fig. 13a shows a result of a simple exper-
iment of dropping a 20 kg box on a simulated robot with
different values of γ = γ1 = γ2. During the adaptation, we
can see that, with small γ, the robot would only slightly adapt
to the load. However, the robot quickly comes to a halt if the
γ1, γ2 are set to as high as 1.0.

In the speed modulation mechanism, kv and kϕ adjust the
sensitivity to the internal speed constraint (Vtarget). Since
Vtarget is uncalibrated and can be arbitrarily chosen, we do
not need to properly tune these values. However, we need to
tune either Ω = |∂L∂ϕ | or γ3 which has the effect of adjusting
the balance between the internal and external constraints.
We found that Ω is easier to tune because it is not directly
coupled to γ1 and γ2. A high value of Ω means that GRAB
is more sensitive to external constraint, which results in the
robot trying to stop/slow down the locomotion to reduce the
tracking-error loss. While, a low value of Ω means that GRAB

(a) Effect of γ after an external load
is added.

(b) Effect of Ω during an increase in
Vtarget.

Fig. 13: The adaptation behaviours during the increase in external loss and
internal loss. γ adjusts GRAB sensitivity to tracking-error loss due to external
perturbations. Ω adjusts GRAB sensitivity to tracking-error loss due to the
internal speed constraint.

is more sensitive to the internal requirement and choose to
speed up ϕ to match Vtarget while allowing the external loss
to be increased. Fig. 13b shows how BC0 joint target adjusts to
the abrupt changes in the internal constraint from Vtarget = 1
to Vtarget = 5. We can then select the value of Ω that keeps
the robot walking forward, while still reasonably reacting to
external perturbations. This shows that the suitable range of
γ and Ω depend on the potential size of the perturbations. A
future work could incorporate a meta mechanism that adjusts
these variables as the robot observes its environment.

IV. DISCUSSION AND CONCLUSION

In this paper, we propose a novel adaptation mechanism,
GRAB, that works by continuously perturbing the CPG dy-
namics in the direction that reduces a pre-specified loss func-
tion. The key benefit of GRAB is the ability to handle generic
pre-specified soft constraints in the loss function, which allows
it to be used in a versatile manner with fast adaptation.

In the experiments, GRAB is able to manipulate the shape,
amplitude and frequency of the CPG driving signal. The
results show that, by adapting the signal, GRAB can lower
maximum torque, tracking error and current used by the robot
under external perturbations. This point to several potential
applications such as a motor protection mechanism and a fail-
safe mechanism.

The final experiment highlights the potential impact of
GRAB. By describing speed as an internal constraint, GRAB
can modulate the walking pattern towards the constraint while
simultaneously handling external perturbations. The speed
modulation mechanism can be used for the semi-automatic
teleoperation of the robot. By describing desired speed in the
loss function, we can avoid a direct setting of the walking fre-
quency, which can go wrong if the driving frequency becomes
too high. GRAB naturally adjust for an appropriate frequency
by considering both the internal dynamic and the external
perturbation. In future work, other constraints, such as the
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balancing constraint, the energy constraint, the robot’s height,
or the robot’s stride width, could potentially be expressed in
the loss function as well.

The key weakness of GRAB lies in the locality of the
loss gradient. In other words, the gradient only reacts to
the instantaneous sensory perceptions. Without the ability to
plan forwards into the future nor predict the long-term result
of its action, GRAB is still limited to only a few types of
perturbations. An interesting direction to explore is how to
combine the foresight ability of the high-level model-based
method with the low-level adaptive ability of GRAB such that
the robot could handle a wider range of environments and
perturbations. Furthermore, applying GRAB to an unstable
system, like a biped robot, or to robot navigation in cluttered
environments, the loss function and constraints need to be
appropriately specified. For example, in the future work, one
could incorporate a balancing constraint (e.g., stability index
[28]) into the loss function to keep the robot balance and,
potentially, a speed constraint that keeps the robot moving,
while adapting its head direction to avoid obstacles by using
exteroceptive sensory feedback with adaptive neural sensory
processing [29].
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